[Swift]LeetCode886. 可能的二分法 | Possible Bipartition
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10603871.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given a set of N
people (numbered 1, 2, ..., N
), we would like to split everyone into two groups of any size.
Each person may dislike some other people, and they should not go into the same group.
Formally, if dislikes[i] = [a, b]
, it means it is not allowed to put the people numbered a
and b
into the same group.
Return true
if and only if it is possible to split everyone into two groups in this way.
Example 1:
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4], group2 [2,3]
Example 2:
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false
Note:
1 <= N <= 2000
0 <= dislikes.length <= 10000
1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
- There does not exist
i != j
for whichdislikes[i] == dislikes[j]
.
给定一组 N
人(编号为 1, 2, ..., N
), 我们想把每个人分进任意大小的两组。
每个人都可能不喜欢其他人,那么他们不应该属于同一组。
形式上,如果 dislikes[i] = [a, b]
,表示不允许将编号为 a
和 b
的人归入同一组。
当可以用这种方法将每个人分进两组时,返回 true
;否则返回 false
。
示例 1:
输入:N = 4, dislikes = [[1,2],[1,3],[2,4]] 输出:true 解释:group1 [1,4], group2 [2,3]
示例 2:
输入:N = 3, dislikes = [[1,2],[1,3],[2,3]] 输出:false
示例 3:
输入:N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]] 输出:false
提示:
1 <= N <= 2000
0 <= dislikes.length <= 10000
1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
- 对于
dislikes[i] == dislikes[j]
不存在i != j
1 class Solution { 2 func possibleBipartition(_ N: Int, _ dislikes: [[Int]]) -> Bool { 3 var len:Int = dislikes.count 4 if len < 2 {return true} 5 var color:[Int] = [Int](repeating:0,count:N + 1) 6 var graph:[[Int]] = [[Int]](repeating:[Int](),count:N + 1) 7 for i in 0..<len 8 { 9 var m:Int = dislikes[i][0] 10 var n:Int = dislikes[i][1] 11 graph[m].append(n) 12 graph[n].append(m) 13 } 14 for i in 1...N 15 { 16 if color[i] == 0 17 { 18 color[i] = 1 19 var q:[Int] = [Int]() 20 q.append(i) 21 while (!q.isEmpty) 22 { 23 var cur:Int = q.removeFirst() 24 for j in graph[cur] 25 { 26 if color[j] == 0 27 { 28 color[j] = color[cur] == 1 ? 2 : 1 29 q.append(j) 30 } 31 else 32 { 33 if color[j] == color[cur] {return false} 34 } 35 } 36 } 37 } 38 } 39 return true 40 } 41 }
【DFS】
1 class Solution { 2 func possibleBipartition(_ N: Int, _ dislikes: [[Int]]) -> Bool { 3 var graph:[[Int]] = [[Int]](repeating:[Int](repeating:0,count:N),count:N) 4 for d in dislikes 5 { 6 graph[d[0] - 1][d[1] - 1] = 1 7 graph[d[1] - 1][d[0] - 1] = 1 8 } 9 var group:[Int] = [Int](repeating:0,count:N) 10 for i in 0..<N 11 { 12 if group[i] == 0 && !dfs(graph, &group, i, 1) 13 { 14 return false 15 } 16 } 17 return true 18 } 19 20 func dfs(_ graph:[[Int]],_ group:inout [Int],_ index:Int,_ g:Int) -> Bool 21 { 22 group[index] = g 23 for i in 0..<graph.count 24 { 25 if graph[index][i] == 1 26 { 27 if group[i] == g 28 { 29 return false 30 } 31 if group[i] == 0 && !dfs(graph, &group, i, -g) 32 { 33 return false 34 } 35 } 36 } 37 return true 38 } 39 }