[Swift]LeetCode823. 带因子的二叉树 | Binary Trees With Factors
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10567314.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any number of times.
Each non-leaf node's value should be equal to the product of the values of it's children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input:A = [2, 4]
Output: 3 Explanation: We can make these trees:[2], [4], [4, 2, 2]
Example 2:
Input:A = [2, 4, 5, 10]
Output:7
Explanation: We can make these trees:[2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2]
.
Note:
1 <= A.length <= 1000
.2 <= A[i] <= 10 ^ 9
.
给出一个含有不重复整数元素的数组,每个整数均大于 1。
我们用这些整数来构建二叉树,每个整数可以使用任意次数。
其中:每个非叶结点的值应等于它的两个子结点的值的乘积。
满足条件的二叉树一共有多少个?返回的结果应模除 10 ** 9 + 7。
示例 1:
输入:A = [2, 4]
输出: 3 解释: 我们可以得到这些二叉树:[2], [4], [4, 2, 2]
示例 2:
输入:A = [2, 4, 5, 10]
输出:7
解释: 我们可以得到这些二叉树:[2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2]
.
提示:
1 <= A.length <= 1000.
2 <= A[i] <= 10 ^ 9
.
1 class Solution { 2 func numFactoredBinaryTrees(_ A: [Int]) -> Int { 3 var res:Int = 0 4 var M:Int = Int(1e9 + 7) 5 var dp:[Int:Int] = [Int:Int]() 6 var A = A.sorted(by:<) 7 for i in 0..<A.count 8 { 9 dp[A[i]] = 1 10 for j in 0..<i 11 { 12 if A[i] % A[j] == 0 && dp[A[i] / A[j]] != nil 13 { 14 dp[A[i]] = dp[A[i],default:0] + dp[A[j],default:0] * dp[Int(A[i] / A[j]),default:0] % M 15 } 16 } 17 } 18 for (key,val) in dp 19 { 20 res = (res + val) % M 21 } 22 return res 23 } 24 }