为有牺牲多壮志,敢教日月换新天。

[Swift]LeetCode786. 第 K 个最小的素数分数 | K-th Smallest Prime Fraction

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10545344.html 
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

热烈欢迎,请直接点击!!!

进入博主App Store主页,下载使用各个作品!!!

注:博主将坚持每月上线一个新app!!!

A sorted list A contains 1, plus some number of primes.  Then, for every p < q in the list, we consider the fraction p/q.

What is the K-th smallest fraction considered?  Return your answer as an array of ints, where answer[0] = p and answer[1] = q.

Examples:
Input: A = [1, 2, 3, 5], K = 3
Output: [2, 5]
Explanation:
The fractions to be considered in sorted order are:
1/5, 1/3, 2/5, 1/2, 3/5, 2/3.
The third fraction is 2/5.

Input: A = [1, 7], K = 1
Output: [1, 7]

Note:

  • A will have length between 2 and 2000.
  • Each A[i] will be between 1 and 30000.
  • K will be between 1 and A.length * (A.length - 1) / 2.

一个已排序好的表 A,其包含 1 和其他一些素数.  当列表中的每一个 p<q 时,我们可以构造一个分数 p/q 。

那么第 k 个最小的分数是多少呢?  以整数数组的形式返回你的答案, 这里 answer[0] = p 且 answer[1] = q.

示例:
输入: A = [1, 2, 3, 5], K = 3
输出: [2, 5]
解释:
已构造好的分数,排序后如下所示:
1/5, 1/3, 2/5, 1/2, 3/5, 2/3.
很明显第三个最小的分数是 2/5.

输入: A = [1, 7], K = 1
输出: [1, 7]

注意:

  • A 的取值范围在 2 — 2000.
  • 每个 A[i] 的值在 1 —30000.
  • K 取值范围为 1 —A.length * (A.length - 1) / 2

Runtime: 64 ms
Memory Usage: 19.1 MB
 1 class Solution {
 2     func kthSmallestPrimeFraction(_ A: [Int], _ K: Int) -> [Int] {
 3         var left:Double = 0
 4         var right:Double = 1.0
 5         var p:Int = 0
 6         var q:Int = 1
 7         var cnt:Int = 0
 8         var n:Int = A.count
 9         while(true)
10         {
11             var mid:Double = left + (right - left) / 2.0
12             cnt = 0
13             p = 0
14             var j:Int = 0
15             for i in 0..<n
16             {
17                 while(j < n && Double(A[i]) > mid * Double(A[j]))
18                 {
19                     j += 1
20                 }
21                 cnt += n - j
22                 if j < n && p * A[j] < q * A[i]
23                 {
24                     p = A[i]
25                     q = A[j]
26                 }                
27             }
28             if cnt == K {return [p,q]}
29             else if cnt < K {left = mid}
30             else {right = mid}
31         }
32     }
33 }

 

posted @ 2019-03-17 08:48  为敢技术  阅读(320)  评论(0编辑  收藏  举报