[Swift]LeetCode786. 第 K 个最小的素数分数 | K-th Smallest Prime Fraction
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10545344.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
A sorted list A
contains 1, plus some number of primes. Then, for every p < q in the list, we consider the fraction p/q.
What is the K
-th smallest fraction considered? Return your answer as an array of ints, where answer[0] = p
and answer[1] = q
.
Examples: Input: A = [1, 2, 3, 5], K = 3 Output: [2, 5] Explanation: The fractions to be considered in sorted order are: 1/5, 1/3, 2/5, 1/2, 3/5, 2/3. The third fraction is 2/5. Input: A = [1, 7], K = 1 Output: [1, 7]
Note:
A
will have length between2
and2000
.- Each
A[i]
will be between1
and30000
. K
will be between1
andA.length * (A.length - 1) / 2
.
一个已排序好的表 A
,其包含 1 和其他一些素数. 当列表中的每一个 p<q 时,我们可以构造一个分数 p/q 。
那么第 k
个最小的分数是多少呢? 以整数数组的形式返回你的答案, 这里 answer[0] = p
且 answer[1] = q
.
示例: 输入: A = [1, 2, 3, 5], K = 3 输出: [2, 5] 解释: 已构造好的分数,排序后如下所示: 1/5, 1/3, 2/5, 1/2, 3/5, 2/3. 很明显第三个最小的分数是 2/5. 输入: A = [1, 7], K = 1 输出: [1, 7]
注意:
A
的取值范围在2
—2000
.- 每个
A[i]
的值在1
—30000
. K
取值范围为1
—A.length * (A.length - 1) / 2
Runtime: 64 ms
Memory Usage: 19.1 MB
1 class Solution { 2 func kthSmallestPrimeFraction(_ A: [Int], _ K: Int) -> [Int] { 3 var left:Double = 0 4 var right:Double = 1.0 5 var p:Int = 0 6 var q:Int = 1 7 var cnt:Int = 0 8 var n:Int = A.count 9 while(true) 10 { 11 var mid:Double = left + (right - left) / 2.0 12 cnt = 0 13 p = 0 14 var j:Int = 0 15 for i in 0..<n 16 { 17 while(j < n && Double(A[i]) > mid * Double(A[j])) 18 { 19 j += 1 20 } 21 cnt += n - j 22 if j < n && p * A[j] < q * A[i] 23 { 24 p = A[i] 25 q = A[j] 26 } 27 } 28 if cnt == K {return [p,q]} 29 else if cnt < K {left = mid} 30 else {right = mid} 31 } 32 } 33 }