[Swift]LeetCode699. 掉落的方块 | Falling Squares
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10502785.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
On an infinite number line (x-axis), we drop given squares in the order they are given.
The i
-th square dropped (positions[i] = (left, side_length)
) is a square with the left-most point being positions[i][0]
and sidelength positions[i][1]
.
The square is dropped with the bottom edge parallel to the number line, and from a higher height than all currently landed squares. We wait for each square to stick before dropping the next.
The squares are infinitely sticky on their bottom edge, and will remain fixed to any positive length surface they touch (either the number line or another square). Squares dropped adjacent to each other will not stick together prematurely.
Return a list ans
of heights. Each height ans[i]
represents the current highest height of any square we have dropped, after dropping squares represented by positions[0], positions[1], ..., positions[i]
.
Example 1:
Input: [[1, 2], [2, 3], [6, 1]] Output: [2, 5, 5] Explanation:
After the first drop of positions[0] = [1, 2]: _aa _aa -------
The maximum height of any square is 2.
After the second drop of positions[1] = [2, 3]: __aaa __aaa __aaa _aa__ _aa__ --------------
The maximum height of any square is 5. The larger square stays on top of the smaller square despite where its center of gravity is, because squares are infinitely sticky on their bottom edge.
After the third drop of positions[1] = [6, 1]: __aaa __aaa __aaa _aa _aa___a --------------
The maximum height of any square is still 5. Thus, we return an answer of [2, 5, 5]
.
Example 2:
Input: [[100, 100], [200, 100]] Output: [100, 100] Explanation: Adjacent squares don't get stuck prematurely - only their bottom edge can stick to surfaces.
Note:
1 <= positions.length <= 1000
.1 <= positions[i][0] <= 10^8
.1 <= positions[i][1] <= 10^6
.
在无限长的数轴(即 x 轴)上,我们根据给定的顺序放置对应的正方形方块。
第 i
个掉落的方块(positions[i] = (left, side_length)
)是正方形,其中 left 表示该方块最左边的点位置(positions[i][0]),side_length 表示该方块的边长(positions[i][1])。
每个方块的底部边缘平行于数轴(即 x 轴),并且从一个比目前所有的落地方块更高的高度掉落而下。在上一个方块结束掉落,并保持静止后,才开始掉落新方块。
方块的底边具有非常大的粘性,并将保持固定在它们所接触的任何长度表面上(无论是数轴还是其他方块)。邻接掉落的边不会过早地粘合在一起,因为只有底边才具有粘性。
返回一个堆叠高度列表 ans
。每一个堆叠高度 ans[i]
表示在通过 positions[0], positions[1], ..., positions[i]
表示的方块掉落结束后,目前所有已经落稳的方块堆叠的最高高度。
示例 1:
positions[0] = [1, 2]
_aa
_aa
-------
positions[1] = [2, 3]
__aaa
__aaa
__aaa
_aa__
_aa__
--------------
positions[1] = [6, 1]
__aaa
__aaa
__aaa
_aa
_aa___a
--------------
[2, 5, 5]。
示例 2:
输入: [[100, 100], [200, 100]] 输出: [100, 100] 解释: 相邻的方块不会过早地卡住,只有它们的底部边缘才能粘在表面上。
注意:
1 <= positions.length <= 1000
.1 <= positions[i][0] <= 10^8
.1 <= positions[i][1] <= 10^6
.
1 class Solution { 2 func fallingSquares(_ positions: [[Int]]) -> [Int] { 3 var n:Int = positions.count 4 var cur:Int = 0 5 var heights:[Int] = [Int](repeating:0,count:n) 6 var res:[Int] = [Int]() 7 for i in 0..<n 8 { 9 var len:Int = positions[i].last! 10 var left:Int = positions[i].first! 11 var right:Int = left + len 12 heights[i] += len 13 for j in (i + 1)..<n 14 { 15 var l:Int = positions[j].first! 16 var r:Int = l + positions[j].last! 17 if l < right && r > left 18 { 19 heights[j] = max(heights[j], heights[i]) 20 } 21 } 22 } 23 for h in heights 24 { 25 cur = max(cur, h); 26 res.append(cur) 27 } 28 return res 29 } 30 }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了