[Swift]LeetCode692. 前K个高频单词 | Top K Frequent Words
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10502182.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given a non-empty list of words, return the k most frequent elements.
Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.
Example 1:
Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2 Output: ["i", "love"] Explanation: "i" and "love" are the two most frequent words. Note that "i" comes before "love" due to a lower alphabetical order.
Example 2:
Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4 Output: ["the", "is", "sunny", "day"] Explanation: "the", "is", "sunny" and "day" are the four most frequent words, with the number of occurrence being 4, 3, 2 and 1 respectively.
Note:
- You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
- Input words contain only lowercase letters.
Follow up:
- Try to solve it in O(n log k) time and O(n) extra space.
给一非空的单词列表,返回前 k 个出现次数最多的单词。
返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率,按字母顺序排序。
示例 1:
输入: ["i", "love", "leetcode", "i", "love", "coding"], k = 2 输出: ["i", "love"] 解析: "i" 和 "love" 为出现次数最多的两个单词,均为2次。 注意,按字母顺序 "i" 在 "love" 之前。
示例 2:
输入: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4 输出: ["the", "is", "sunny", "day"] 解析: "the", "is", "sunny" 和 "day" 是出现次数最多的四个单词, 出现次数依次为 4, 3, 2 和 1 次。
注意:
- 假定 k 总为有效值, 1 ≤ k ≤ 集合元素数。
- 输入的单词均由小写字母组成。
扩展练习:
- 尝试以 O(n log k) 时间复杂度和 O(n) 空间复杂度解决。
76ms
1 class Solution { 2 func topKFrequent(_ words: [String], _ k: Int) -> [String] { 3 var frequencyList = [String:Int]() 4 for word in words { 5 if let count = frequencyList[word] { 6 frequencyList[word] = count + 1 7 } else { 8 frequencyList[word] = 1 9 } 10 } 11 let b = frequencyList.sorted { (dic1, dic2) -> Bool in 12 if dic1.value != dic2.value { 13 return dic1.value > dic2.value 14 } else { 15 return dic1.key < dic2.key 16 } 17 } 18 var result = [String]() 19 for item in b { 20 result.append(item.key) 21 if result.count == k { 22 return result 23 } 24 } 25 return result 26 } 27 }
Runtime: 88 ms
Memory Usage: 20.4 MB
1 class Solution { 2 func topKFrequent(_ words: [String], _ k: Int) -> [String] { 3 var k = k 4 var res:[String] = [String]() 5 var freq:[String:Int] = [String:Int]() 6 var v:[Set<String>] = [Set<String>](repeating:Set<String>(),count:words.count + 1) 7 for word in words 8 { 9 freq[word,default:0] += 1 10 } 11 for (key,val) in freq 12 { 13 v[val].insert(key) 14 } 15 for i in stride(from:v.count - 1,through:0,by:-1) 16 { 17 if k <= 0 {break} 18 var t:[String] = v[i].sorted() 19 if k >= t.count 20 { 21 res += t 22 } 23 else 24 { 25 26 res += t[0..<k] 27 } 28 k -= t.count 29 } 30 return res 31 } 32 }
88ms
1 class Solution { 2 func topKFrequent(_ words: [String], _ k: Int) -> [String] { 3 var countMap = [String: Int]() 4 var firstAppearance = [String: Int]() 5 for (i, word) in words.enumerated() { 6 countMap[word, default: 0] += 1 7 if firstAppearance[word] == nil { 8 firstAppearance[word] = i 9 } 10 } 11 var sortedStringsBasedOnCount = countMap.sorted { 12 return $0.value > $1.value || 13 ($0.value == $1.value && $0.key < $1.key) 14 } 15 return sortedStringsBasedOnCount[0..<k].map { $0.0 } 16 } 17 }
92ms
1 class Solution { 2 func topKFrequent(_ words: [String], _ k: Int) -> [String] { 3 var countMap = [String: Int]() 4 words.forEach { countMap[$0, default: 0] += 1 } 5 var sortedStringsBasedOnCount = countMap.sorted { 6 return $0.value > $1.value || 7 ($0.value == $1.value && $0.key < $1.key) 8 } 9 return sortedStringsBasedOnCount[0..<k].map { $0.0 } 10 } 11 }
96ms
1 class Solution { 2 func topKFrequent(_ words: [String], _ k: Int) -> [String] { 3 var wordDict = [String : Int]() 4 for word in words { 5 wordDict[word] = 1 + (wordDict[word] ?? 0) 6 } 7 return wordDict.sorted { 8 $0.value > $1.value || $0.value == $1.value && $0.key < $1.key 9 }[0..<k].map{$0.key} 10 } 11 }
100ms
1 class Solution { 2 func topKFrequent(_ words: [String], _ k: Int) -> [String] { 3 var frequencyList = [String:Int]() 4 for word in words { 5 if let count = frequencyList[word] { 6 frequencyList[word] = count + 1 7 } else { 8 frequencyList[word] = 1 9 } 10 } 11 var frequencyList2 = [[String]](repeating:[String](), count:words.count) 12 for (key, value) in frequencyList { 13 frequencyList2[value].append(key) 14 frequencyList2[value] = frequencyList2[value].sorted() 15 } 16 frequencyList2 = frequencyList2.filter{$0 != [String]()} 17 var result = [String]() 18 var index = frequencyList2.count - 1 19 while index >= 0 { 20 for item in frequencyList2[index] { 21 result.append(item) 22 if result.count == k { 23 return result 24 } 25 } 26 index -= 1 27 } 28 return result 29 } 30 }
128ms
1 class Solution { 2 func topKFrequent(_ words: [String], _ k: Int) -> [String] { 3 guard words.count > 0 else { 4 return [String]() 5 } 6 7 var memo = [String:Int]() 8 9 for w in words { 10 memo[w] = memo[w, default:0] + 1 11 } 12 13 var helpArray = [[String]]() 14 15 for key in memo.keys { 16 if let count = memo[key] { 17 helpArray.append([String(count), key]) 18 } 19 } 20 21 helpArray.sort(by:{ 22 if Int($0[0])! > Int($1[0])! { 23 return true 24 } else if Int($0[0])! < Int($1[0])! { 25 return false 26 } else { 27 return $0[1] < $1[1] 28 } 29 }) 30 var sortedArray = helpArray.map{ $0[1] } 31 32 return Array(sortedArray[0...k - 1]) 33 } 34 }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了