[Swift]LeetCode654. 最大二叉树 | Maximum Binary Tree
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10485675.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given an integer array with no duplicates. A maximum tree building on this array is defined as follow:
- The root is the maximum number in the array.
- The left subtree is the maximum tree constructed from left part subarray divided by the maximum number.
- The right subtree is the maximum tree constructed from right part subarray divided by the maximum number.
Construct the maximum tree by the given array and output the root node of this tree.
Example 1:
Input: [3,2,1,6,0,5] Output: return the tree root node representing the following tree: 6 / \ 3 5 \ / 2 0 \ 1
Note:
- The size of the given array will be in the range [1,1000].
给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:
- 二叉树的根是数组中的最大元素。
- 左子树是通过数组中最大值左边部分构造出的最大二叉树。
- 右子树是通过数组中最大值右边部分构造出的最大二叉树。
通过给定的数组构建最大二叉树,并且输出这个树的根节点。
Example 1:
输入: [3,2,1,6,0,5] 输入: 返回下面这棵树的根节点: 6 / \ 3 5 \ / 2 0 \ 1
注意:
- 给定的数组的大小在 [1, 1000] 之间。
104ms
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * public var val: Int 5 * public var left: TreeNode? 6 * public var right: TreeNode? 7 * public init(_ val: Int) { 8 * self.val = val 9 * self.left = nil 10 * self.right = nil 11 * } 12 * } 13 */ 14 class Solution { 15 func constructMaximumBinaryTree(_ nums: [Int]) -> TreeNode? { 16 let end = nums.count 17 if (end == 0) { 18 return nil 19 } 20 var nums = nums 21 return construct(&nums, 0, end-1) 22 } 23 24 func construct(_ nums: inout [Int], _ start: Int, _ end: Int) -> TreeNode { 25 var maxNumber = Int.min; var maxIndex = 0 26 27 for i in start...end { 28 if (nums[i] >= maxNumber) { 29 maxNumber = nums[i] 30 maxIndex = i 31 } 32 } 33 let head = TreeNode(maxNumber) 34 35 if (start != end) { 36 switch maxIndex { 37 case start: 38 head.right = construct(&nums, start+1, end) 39 case end: 40 head.left = construct(&nums, start, end-1) 41 default: 42 head.left = construct(&nums, start, maxIndex-1) 43 head.right = construct(&nums, maxIndex+1, end) 44 } 45 } 46 47 return head 48 } 49 }
108ms
1 class Solution { 2 func constructMaximumBinaryTree(_ nums: [Int]) -> TreeNode? { 3 4 return construct(nums, 0, nums.count) 5 } 6 7 func construct(_ n: [Int], _ s: Int, _ e: Int) -> TreeNode? { 8 if s == e { return nil } 9 10 let idx = max(n, s, e) 11 12 var r = TreeNode(n[idx]) 13 r.left = construct(n, s, idx) 14 r.right = construct(n, idx+1, e) 15 return r 16 } 17 18 func max(_ nums: [Int], _ s: Int, _ e: Int) -> Int { 19 var idx = s 20 for i in s..<e { 21 if nums[idx] < nums[i] { 22 idx = i 23 } 24 } 25 return idx 26 } 27 }
116ms
1 class Solution { 2 func constructMaximumBinaryTree(_ nums: [Int]) -> TreeNode? { 3 return findMidMax(nums, 0, nums.count - 1) 4 } 5 6 func findMidMax(_ nums:[Int], _ i:Int, _ j:Int) -> TreeNode? { 7 8 if i < 0 || i >= nums.count { 9 return nil 10 } else if j < 0 || j >= nums.count { 11 return nil 12 } else if i > j { 13 return nil 14 } 15 16 17 18 var maxNum = Int.min 19 var maxIndex = -1 20 var index = i 21 while (index <= j) { 22 if maxNum < nums[index]{ 23 maxNum = nums[index] 24 maxIndex = index 25 } 26 index = index + 1 27 } 28 29 var rootNode = TreeNode(nums[maxIndex]) 30 rootNode.left = findMidMax(nums, i, maxIndex - 1) 31 rootNode.right = findMidMax(nums, maxIndex + 1, j) 32 33 return rootNode 34 } 35 }
120ms
1 class Solution { 2 3 func constructMaximumBinaryTree(_ nums: [Int]) -> TreeNode? { 4 var stack = [TreeNode]() 5 6 for i in 0..<nums.count { 7 var cur = TreeNode(nums[i]) 8 while let last = stack.last, last.val < nums[i] { 9 cur.left = last 10 stack.popLast() 11 } 12 if (!stack.isEmpty) { 13 stack.last?.right = cur 14 } 15 stack.append(cur) 16 } 17 return stack.first 18 } 19 }
132ms
1 class Solution { 2 func constructMaximumBinaryTree(_ nums: [Int]) -> TreeNode? { 3 if nums.count == 0 { return nil } 4 if nums.count == 1 { return TreeNode(nums[0]) } 5 let maxIdx = getMaxIndex(nums) 6 let tree = TreeNode(nums[maxIdx]) 7 tree.left = constructMaximumBinaryTree(Array(nums.prefix(maxIdx))) 8 if nums.count > maxIdx { 9 tree.right = constructMaximumBinaryTree(Array(nums.suffix(from: maxIdx+1))) 10 } 11 12 return tree 13 } 14 15 func getMaxIndex(_ arr: [Int]) -> Int { 16 var maxIdx = 0 17 for i in 0..<arr.count { 18 if arr[maxIdx] < arr[i] { maxIdx = i } 19 } 20 return maxIdx 21 } 22 }
Runtime: 156 ms
Memory Usage: 19.9 MB
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * public var val: Int 5 * public var left: TreeNode? 6 * public var right: TreeNode? 7 * public init(_ val: Int) { 8 * self.val = val 9 * self.left = nil 10 * self.right = nil 11 * } 12 * } 13 */ 14 class Solution { 15 func constructMaximumBinaryTree(_ nums: [Int]) -> TreeNode? { 16 var v:[TreeNode?] = [TreeNode?]() 17 for num in nums 18 { 19 var cur:TreeNode? = TreeNode(num) 20 while(!v.isEmpty && v.last!!.val < num) 21 { 22 cur?.left = v.removeLast() 23 } 24 if !v.isEmpty 25 { 26 v.last!!.right = cur 27 } 28 v.append(cur) 29 } 30 return v.first! 31 } 32 }
160ms
1 class Solution { 2 func constructMaximumBinaryTree(_ nums: [Int]) -> TreeNode? { 3 guard !nums.isEmpty else { 4 return nil 5 } 6 var root = -1 7 var rootIndex = 0 8 var leftIndex = 0 9 let rightIndex = nums.count - 1 10 while leftIndex <= rightIndex { 11 let left = nums[leftIndex] 12 if left > root { 13 root = left 14 rootIndex = leftIndex 15 } 16 leftIndex += 1 17 } 18 let tree = TreeNode(root) 19 tree.left = constructMaximumBinaryTree(Array(nums[0..<rootIndex])) 20 tree.right = constructMaximumBinaryTree(Array(nums[(rootIndex + 1)...])) 21 return tree 22 } 23 }