为有牺牲多壮志,敢教日月换新天。

[Swift]LeetCode486. 预测赢家 | Predict the Winner

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10348512.html 
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

热烈欢迎,请直接点击!!!

进入博主App Store主页,下载使用各个作品!!!

注:博主将坚持每月上线一个新app!!!

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2. 
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False. 

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win. 

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

给定一个表示分数的非负整数数组。 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,……。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

示例 1:

输入: [1, 5, 2]
输出: False
解释: 一开始,玩家1可以从1和2中进行选择。
如果他选择2(或者1),那么玩家2可以从1(或者2)和5中进行选择。如果玩家2选择了5,那么玩家1则只剩下1(或者2)可选。
所以,玩家1的最终分数为 1 + 2 = 3,而玩家2为 5。
因此,玩家1永远不会成为赢家,返回 False。

示例 2:

输入: [1, 5, 233, 7]
输出: True
解释: 玩家1一开始选择1。然后玩家2必须从5和7中进行选择。无论玩家2选择了哪个,玩家1都可以选择233。
最终,玩家1(234分)比玩家2(12分)获得更多的分数,所以返回 True,表示玩家1可以成为赢家。

注意:

  1. 1 <= 给定的数组长度 <= 20.
  2. 数组里所有分数都为非负数且不会大于10000000。
  3. 如果最终两个玩家的分数相等,那么玩家1仍为赢家。

Runtime: 12 ms
Memory Usage: 3.9 MB
 1 class Solution {
 2     func PredictTheWinner(_ nums: [Int]) -> Bool {
 3         var nums = nums
 4         var n:Int = nums.count
 5         var dp:[[Int]] = [[Int]](repeating:[Int](repeating:-1,count:n),count:n)
 6         return canWin(&nums, 0, n - 1, &dp) >= 0
 7     }
 8     
 9     func canWin(_ nums:inout [Int],_ s:Int,_ e:Int,_ dp:inout [[Int]]) -> Int
10     {
11         if dp[s][e] == -1
12         {
13             dp[s][e] = (s == e) ? nums[s] : max(nums[s] - canWin(&nums, s + 1, e, &dp), nums[e] - canWin(&nums, s, e - 1, &dp))
14         }
15         return dp[s][e]
16     }
17 }

 

posted @ 2019-02-02 15:21  为敢技术  阅读(308)  评论(0编辑  收藏  举报