为有牺牲多壮志,敢教日月换新天。

[Swift]LeetCode417. 太平洋大西洋水流问题 | Pacific Atlantic Water Flow

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:为敢(WeiGanTechnologies)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10332885.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

热烈欢迎,请直接点击!!!

进入博主App Store主页,下载使用各个作品!!!

注:博主将坚持每月上线一个新app!!!

Given an m x n matrix of non-negative integers representing the height of each unit cell in a continent, the "Pacific ocean" touches the left and top edges of the matrix and the "Atlantic ocean" touches the right and bottom edges.

Water can only flow in four directions (up, down, left, or right) from a cell to another one with height equal or lower.

Find the list of grid coordinates where water can flow to both the Pacific and Atlantic ocean.

Note:

  1. The order of returned grid coordinates does not matter.
  2. Both m and n are less than 150. 

Example:

Given the following 5x5 matrix:

  Pacific ~   ~   ~   ~   ~ 
       ~  1   2   2   3  (5) *
       ~  3   2   3  (4) (4) *
       ~  2   4  (5)  3   1  *
       ~ (6) (7)  1   4   5  *
       ~ (5)  1   1   2   4  *
          *   *   *   *   * Atlantic

Return:

[[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).

给定一个 m x n 的非负整数矩阵来表示一片大陆上各个单元格的高度。“太平洋”处于大陆的左边界和上边界,而“大西洋”处于大陆的右边界和下边界。

规定水流只能按照上、下、左、右四个方向流动,且只能从高到低或者在同等高度上流动。

请找出那些水流既可以流动到“太平洋”,又能流动到“大西洋”的陆地单元的坐标。 

提示:

  1. 输出坐标的顺序不重要
  2. m 和 n 都小于150 

示例: 

给定下面的 5x5 矩阵:

  太平洋 ~   ~   ~   ~   ~ 
       ~  1   2   2   3  (5) *
       ~  3   2   3  (4) (4) *
       ~  2   4  (5)  3   1  *
       ~ (6) (7)  1   4   5  *
       ~ (5)  1   1   2   4  *
          *   *   *   *   * 大西洋

返回:

[[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (上图中带括号的单元).

320ms
 1 class Solution {
 2     func pacificAtlantic(_ matrix: [[Int]]) -> [[Int]] {
 3         var matrix = matrix
 4         if matrix.isEmpty || matrix[0].isEmpty {return []}
 5         var res:[[Int]] = [[Int]]()
 6         var m:Int = matrix.count
 7         var n:Int = matrix[0].count
 8         var pacific:[[Bool]] = [[Bool]](repeating:[Bool](repeating:false,count:n),count:m)
 9         var atlantic:[[Bool]] = [[Bool]](repeating:[Bool](repeating:false,count:n),count:m)
10         for i in 0..<m
11         {
12             dfs(&matrix, &pacific, Int.min, i, 0)
13             dfs(&matrix, &atlantic, Int.min, i, n - 1)
14         }
15         for i in 0..<n
16         {
17             dfs(&matrix, &pacific, Int.min, 0, i)
18             dfs(&matrix, &atlantic, Int.min, m - 1, i)
19         }
20         
21         for i in 0..<m
22         {
23             for j in 0..<n
24             {
25                 if pacific[i][j] && atlantic[i][j]
26                 {
27                     res.append([i,j])
28                 }                
29             }           
30         }
31         return res
32     }
33     
34     func dfs(_ matrix:inout [[Int]],_ visited:inout [[Bool]],_ pre:Int,_ i:Int,_ j:Int)
35     {
36         var m:Int = matrix.count
37         var n:Int = matrix[0].count
38         if i < 0 || i >= m || j < 0 || j >= n || visited[i][j] || matrix[i][j] < pre
39         {
40             return
41         }
42         visited[i][j] = true
43         dfs(&matrix, &visited, matrix[i][j], i + 1, j)
44         dfs(&matrix, &visited, matrix[i][j], i - 1, j)
45         dfs(&matrix, &visited, matrix[i][j], i, j + 1)
46         dfs(&matrix, &visited, matrix[i][j], i, j - 1)
47     }
48 }

3572ms

 1 class Solution {
 2     var reachable: [[(Bool, Bool)]] = []
 3     
 4     func pacificAtlantic(_ matrix: [[Int]]) -> [[Int]] {
 5         guard !matrix.isEmpty && !matrix[0].isEmpty else { return [] }
 6         let n = matrix.count
 7         let m = matrix[0].count
 8         reachable  = Array(repeating: Array(repeating: (false, false), count: m), count: n)
 9         var visited: [[Bool]] = Array(repeating: Array(repeating: false, count: m), count: n)
10         
11         for i in 0 ..< n {
12             for j in 0 ..< m {
13                 dfs(matrix, i, j, &visited)
14             }
15         }
16         
17         var res: [[Int]] = []
18         
19         for i in 0 ..< n {
20             for j in 0 ..< m {
21                 if reachable[i][j].0 && reachable[i][j].1 {
22                     res.append([i, j])
23                 }
24             }
25         }
26         return res
27     }
28     
29     private func dfs(_ matrix: [[Int]], _ x: Int, _ y: Int, _ visited: inout [[Bool]]) -> (Bool, Bool) {
30         let n = matrix.count
31         let m = matrix[0].count
32         if reachable[x][y].0 && reachable[x][y].1 {
33             return (true, true)
34         }
35         visited[x][y] = true
36         let dirs: [(Int, Int)] = [(-1, 0), (0, -1), (1, 0), (0, 1)]
37         for dir in dirs {
38             let newX = x + dir.0
39             let newY = y + dir.1
40             if newX >= 0 && newX < n && newY >= 0 && newY < m && matrix[newX][newY] > matrix[x][y] {
41                 reachable[x][y].0 = reachable[x][y].0 || false
42                 reachable[x][y].1 = reachable[x][y].1 || false
43             } else if newX < 0 || newX >= n || newY < 0 || newY >= m {
44                 reachable[x][y].0 = reachable[x][y].0 || (newX < 0 || newY < 0)
45                 reachable[x][y].1 = reachable[x][y].1 || (newX >= n || newY >= m)
46             } else if !visited[newX][newY] {
47                 let res = dfs(matrix, newX, newY, &visited)
48                 reachable[x][y].0 = reachable[x][y].0 || res.0
49                 reachable[x][y].1 = reachable[x][y].1 || res.1
50             }
51         }
52         visited[x][y] = false
53         return reachable[x][y]
54     }
55 }

 

posted @ 2019-01-29 10:27  为敢技术  阅读(353)  评论(0编辑  收藏  举报