[Swift]LeetCode343. 整数拆分 | Integer Break
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10262080.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.
Example 1:
Input: 2
Output: 1
Explanation: 2 = 1 + 1, 1 × 1 = 1.
Example 2:
Input: 10
Output: 36
Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
Note: You may assume that n is not less than 2 and not larger than 58.
给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
示例 1:
输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
说明: 你可以假设 n 不小于 2 且不大于 58。
8ms
1 class Solution { 2 func integerBreak(_ n: Int) -> Int { 3 if n < 2 { 4 return 0 5 } 6 7 var res = Array(repeating: 1, count: n+1) 8 9 res[1] = 0 10 11 for i in 2...n { 12 var maxRes = 1 13 for j in 1..<i { 14 maxRes = max(maxRes, max(res[j], j) * max(i-j, res[i-j])) 15 } 16 res[i] = maxRes 17 } 18 return res[n] 19 } 20 }
8ms
1 class Solution { 2 func integerBreak(_ n: Int) -> Int { 3 4 guard n > 3 else { 5 return [1,1,1,2][n] 6 } 7 8 var times3 = n / 3 9 10 if n % 3 == 1 { 11 times3 -= 1 12 } 13 14 let times2 = (n - times3 * 3) / 2 15 16 return Int(pow(3.0, Double(times3))) * Int(pow(2.0, Double(times2))) 17 } 18 }
16ms
1 class Solution { 2 func integerBreak(_ n: Int) -> Int { 3 if n == 2 { 4 return 1 5 } else if n == 3 { 6 return 2 7 } else if n % 3 == 0 { 8 return Int(pow(3, Double(n / 3))) 9 } else if n % 3 == 1 { 10 return Int(2 * 2 * pow(3, Double((n - 4) / 3))) 11 } else { // 2 12 return Int(2 * pow(3, Double((n - 2) / 3))) 13 } 14 } 15 }
24ms
1 class Solution { 2 func integerBreak(_ n: Int) -> Int { 3 var dps = Array(repeating: 0, count: n + 1) 4 dps[1] = 1 5 for num in 2...n { 6 for j in 1..<num { 7 dps[num] = max(dps[num], j * max(num - j, dps[num - j])) 8 } 9 } 10 11 return dps[n] 12 } 13 }