[Swift]LeetCode313. 超级丑数 | Super Ugly Number
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10260454.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Write a program to find the nth
super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes
of size k
.
Example:
Input: n = 12,primes
=[2,7,13,19]
Output: 32 Explanation:[1,2,4,7,8,13,14,16,19,26,28,32]
is the sequence of the first 12 super ugly numbers givenprimes
=[2,7,13,19]
of size 4.
Note:
1
is a super ugly number for any givenprimes
.- The given numbers in
primes
are in ascending order. - 0 <
k
≤ 100, 0 <n
≤ 106, 0 <primes[i]
< 1000. - The nth super ugly number is guaranteed to fit in a 32-bit signed integer.
编写一段程序来查找第 n
个超级丑数。
超级丑数是指其所有质因数都是长度为 k
的质数列表 primes
中的正整数。
示例:
输入: n = 12,primes
=[2,7,13,19]
输出: 32 解释: 给定长度为 4 的质数列表 primes = [2,7,13,19],前 12 个超级丑数序列为:[1,2,4,7,8,13,14,16,19,26,28,32] 。
说明:
1
是任何给定primes
的超级丑数。- 给定
primes
中的数字以升序排列。 - 0 <
k
≤ 100, 0 <n
≤ 106, 0 <primes[i]
< 1000 。 - 第
n
个超级丑数确保在 32 位有符整数范围内。
116 ms
1 class Solution { 2 func nthSuperUglyNumber(_ n: Int, _ primes: [Int]) -> Int { 3 let count = primes.count 4 5 var index = Array(repeatElement(0, count: count)) 6 var value = primes 7 var temp = 0 8 9 var ugly = [1] 10 for _ in 0..<n - 1 { 11 temp = Int.max 12 for j in 0..<count { 13 temp = min(temp, value[j]) 14 } 15 ugly.append(temp) 16 for j in 0..<count { 17 if temp == value[j] { 18 index[j] += 1 19 value[j] = ugly[index[j]] * primes[j] 20 } 21 } 22 } 23 return ugly[n - 1] 24 } 25 }
556ms
1 class Solution { 2 func nthSuperUglyNumber(_ n: Int, _ primes: [Int]) -> Int { 3 var res = [1] 4 var c = Array(repeating: 0, count: primes.count) 5 6 for _ in 0 ..< n-1 { 7 var comp = [Int]() 8 for i in 0 ..< primes.count { 9 comp.append(res[c[i]] * primes[i]) 10 } 11 12 let minP = comp.min()! 13 res.append(minP) 14 15 for j in 0 ..< comp.count where comp[j] == minP { 16 c[j] += 1 17 } 18 } 19 20 return res.last! 21 } 22 }