[Swift]LeetCode968.监控二叉树 | Binary Tree Cameras
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10201562.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given a binary tree, we install cameras on the nodes of the tree.
Each camera at a node can monitor its parent, itself, and its immediate children.
Calculate the minimum number of cameras needed to monitor all nodes of the tree.
Example 1:
Input: [0,0,null,0,0]
Output: 1
Explanation: One camera is enough to monitor all nodes if placed as shown.
Example 2:
Input: [0,0,null,0,null,0,null,null,0]
Output: 2
Explanation: At least two cameras are needed to monitor all nodes of the tree. The above image shows one of the valid configurations of camera placement.
Note:
- The number of nodes in the given tree will be in the range
[1, 1000]
. - Every node has value 0.
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
输入:[0,0,null,0,0] 输出:1 解释:如图所示,一台摄像头足以监控所有节点。
示例 2:
输入:[0,0,null,0,null,0,null,null,0] 输出:2 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
提示:
- 给定树的节点数的范围是
[1, 1000]
。 - 每个节点的值都是 0。
52ms
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * public var val: Int 5 * public var left: TreeNode? 6 * public var right: TreeNode? 7 * public init(_ val: Int) { 8 * self.val = val 9 * self.left = nil 10 * self.right = nil 11 * } 12 * } 13 */ 14 class Solution { 15 func minCameraCover(_ root: TreeNode?) -> Int { 16 var ans:[Int] = mh(root) 17 return min(ans[1], ans[2]) 18 } 19 20 func mh(_ ro:TreeNode?)-> [Int] 21 { 22 if ro == nil 23 { 24 var ans:[Int] = [Int](repeating:0,count:3) 25 ans[1] = 1000000 26 return ans 27 } 28 var l:[Int] = mh(ro!.left) 29 var r:[Int] = mh(ro!.right) 30 var ans:[Int] = [Int](repeating:0,count:3) 31 ans[0] = l[2] + r[2]; 32 ans[1] = 1000000; 33 ans[2] = 1000000; 34 for i in 0..<3 35 { 36 for j in 0..<3 37 { 38 ans[1] = min(ans[1], l[i]+r[j]+1) 39 } 40 if i==0 {continue} 41 ans[2] = min(ans[2], l[1]+r[i]) 42 ans[2] = min(ans[2], l[i]+r[1]) 43 } 44 return ans 45 } 46 }