洛谷 P4720 【模板】扩展 / 卢卡斯 模板题

扩展卢卡斯定理 : https://www.luogu.org/problemnew/show/P4720

卢卡斯定理: https://www.luogu.org/problemnew/show/P3807

卢卡斯模板

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N =1e5;
ll n, m, p, fac[N];
void init()
{
    int i;
    fac[0] =1;
    for(i =1; i <= p; i++)
        fac[i] = fac[i-1]*i % p;
}
ll q_pow(ll a, ll b)
{
    ll  ans =1;
    while(b)
    {
        if(b &1)  ans = ans * a % p;
        b>>=1;
        a = a*a % p;
    }
    return  ans;
}

ll C(ll n, ll m)
{
    if(m > n)  return 0;
    return  fac[n]*q_pow(fac[m]*fac[n-m], p-2) % p;
}

ll Lucas(ll n, ll m )
{
    if(m ==0)  return 1;
    else return  (C(n%p, m%p)*Lucas(n/p, m/p))%p;
}

int main()
{
    int t;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%lld%lld%lld", &n, &m, &p);
        init();
        printf("%lld\n", Lucas(n+m, m));
    }
    return 0;
}

扩展卢卡斯模板

#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;

ll read()
{
    ll f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const int maxn=50001;
ll a[maxn],b[maxn],cnt;

ll qpow(ll ai,ll k,ll mod)
{
    ll mul=1;
    while(k>0)
    {
        if(k&1)mul=(mul*ai)%mod;
        ai=(ai*ai)%mod;
        k>>=1;
    }
    return mul;
}

ll fac(ll n,ll pi,ll pk)
{
    if(!n) return 1;
    ll mul=1;

    for(ll i=2;i<=pk;++i)//分解阶乘第二部分,循环节
    if(i%pi)mul=(mul*i)%pk;
    mul=qpow(mul,n/pk,pk);

    for(ll i=2;i<=n%pk;++i)//分解阶乘第三部分,求剩余数字
    if(i%pi)mul=(mul*i)%pk;

    return mul*fac(n/pi,pi,pk)%pk;//分解阶乘第一部分的另一个阶乘递归
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;y=0;return;
    }
    exgcd(b,a%b,x,y);
    ll tp=x;
    x=y; y=tp-a/b*y;
}
ll inv(ll a,ll b)
{
    ll x,y;
    exgcd(a,b,x,y);
    return (x%b+b)%b;
}
ll C(ll n,ll m,ll pi,ll pk)
{
    ll facn=fac(n,pi,pk);//分别求n,m,n-m膜pi^ki的阶乘
    ll facm=fac(m,pi,pk);
    ll facnm=fac(n-m,pi,pk);
    ll kk=0;
    for(ll i=n;i;i/=pi)kk+=i/pi;//上述分解阶乘第一部分的pi幂次方
    for(ll i=m;i;i/=pi)kk-=i/pi;
    for(ll i=n-m;i;i/=pi)kk-=i/pi;

    return facn*inv(facm,pk)%pk*inv(facnm,pk)%pk*qpow(pi,kk,pk)%pk;//注意求逆元
}
void div(ll n,ll m,ll x)
{
    for(ll i=2;i<=sqrt(x);++i)
    {
        if(x%i==0)
        {
            ll pi=i,ki=0;
            while(x%i==0)x/=i,ki++;
            b[++cnt]=qpow(pi,ki,1e7);
            a[cnt]=C(n,m,pi,b[cnt]);//C(n,m)%pi^ki
        }
    }
    if(x>1)
        b[++cnt]=x,a[cnt]=C(n,m,x,b[cnt]);
}

ll exlucas()//china
{
    ll ans=0,M=1,x,y;
    for(int i=1;i<=cnt;++i) M*=b[i];
    for(int i=1;i<=cnt;++i)
    {
        ll tp=M/b[i];
        exgcd(tp,b[i],x,y);
        x=(x%b[i]+b[i])%b[i];
        ans=(ans+tp*x*a[i])%M;
    }
    return (ans+M)%M;
}
int main()
{
    ll n=read(),m=read(),p=read();
    div(n,m,p);
    printf("%lld",exlucas());
    return 0;
}

 

posted @ 2018-10-08 19:47  灬从此以后灬  阅读(305)  评论(0编辑  收藏  举报