BZOJ 3884 拓展欧拉定理
3884: 上帝与集合的正确用法
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 4142 Solved: 1907
[Submit][Status][Discuss]
Description
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
一句话题意:
Input
接下来T行,每行一个正整数p,代表你需要取模的值
Output
T行,每行一个正整数,为答案对p取模后的值
Sample Input
3
2
3
6
2
3
6
Sample Output
0
1
4
1
4
HINT
对于100%的数据,T<=1000,p<=10^7
欧拉定理
(a , p) 互质
拓展欧拉定理(降幂)
第二个式子不能合并到第三个
定理证明 不会..
解析 由于是2的无限次幂 所以每一层指数肯定大于对应的p 所以直接拓展欧拉定理第三个公式 递归求解phi(phi(phi(...)))) 直到等于1 回朔的时候快速幂求解
复杂度 O(T*log(p)*sqtr(p)) 看起来很大 但是实际上上界是很松的,反正过了。据说打表会超时。
#include <bits/stdc++.h> #define pb push_back #define mp make_pair #define fi first #define se second #define all(a) (a).begin(), (a).end() #define fillchar(a, x) memset(a, x, sizeof(a)) #define huan printf("\n"); using namespace std; typedef long long ll; const int maxn=1e5+20,maxm=100,inf=0x3f3f3f3f; ll poww(ll n,ll m,ll mod) { ll ans = 1; while(m > 0) { if(m & 1)ans = (ans * n) % mod; m = m >> 1; n = (n * n) % mod; } return ans; } ll phi(ll n) //返回euler(n) { ll res=n,a=n; for(ll i=2; i*i<=a; i++) { if(a%i==0) { res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出 爆int while(a%i==0) a/=i; } } if(a>1) res=res/a*(a-1); return res; } ll dfs(ll p) { if(p==1)return 0; ll x=phi(p); return poww(2,dfs(x)+x,p); } int main() { int t,p; scanf("%d",&t); while(t--) { scanf("%d",&p); printf("%lld\n",dfs(p)); } }