HDU 6333 莫队+组合数

Problem B. Harvest of Apples

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2397    Accepted Submission(s): 934


Problem Description
There are n apples on a tree, numbered from 1 to n.
Count the number of ways to pick at most m apples.
 
Input
The first line of the input contains an integer T (1T105) denoting the number of test cases.
Each test case consists of one line with two integers n,m (1mn105).
 
Output
For each test case, print an integer representing the number of ways modulo 109+7.
 
Sample Input
2
5 2
1000 500
 
Sample Output
16
924129523
 
Source

解析  不难发现S(n,m)也满足左上角加右上角(杨辉三角)  所以根据公式可以O(1)得到S(n-1,m),S(n+1,m),S(n,m-1),S(n,m+1) 可以看做区间的转移 从而套用莫队实现求解

AC代码  

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan prllf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
typedef long long ll;
const ll maxn=1e5+10,inf=0x3f3f3f3f;
const ll mod=1e9+7;
ll gcd(ll a,ll b){ return b?gcd(b,a%b):a;}
ll fac[maxn],inv[maxn],ans[maxn];
ll chunk;
struct node
{
    ll l,r,id,chunk;
}q[maxn];
bool cmp(node a,node b)
{
    if(a.chunk!=b.chunk)
        return a.l<b.l;
    return a.r<b.r;
}
void init()
{
    fac[0]=fac[1]=1;
    inv[0]=inv[1]=1;
    for(ll i=2;i<maxn;i++)
    {
        fac[i]=fac[i-1]*i%mod;
        inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
    }
    for(ll i=2;i<maxn;i++)         //不可以写成一个for inv还会用到
        inv[i]=inv[i-1]*inv[i]%mod;  //可以再开一个数组 写成一个for
}
ll C(ll x,ll y)
{
    if(y>x) return 0;
    return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
    init();//预处理组合数逆元 从而O(1)获得组合数 实现转移
    ll t;
    chunk=sqrt(maxn);
    scanf("%lld",&t);
    for(ll i=1;i<=t;i++)
    {
        ll n,m;
        scanf("%lld%lld",&n,&m);
        q[i]=node{n,m,i,n/chunk+1};
    }
    sort(q+1,q+1+t,cmp);
    ll l=1,r=0,res=1;
    for(ll i=1;i<=t;i++)
    {
        while(l<q[i].l)
        {
            res=(res*2%mod-C(l,r)+mod)%mod;
            l++;
        }
        while(l>q[i].l)
        {
            l--;
            res=(res+C(l,r))%mod*inv[2]%mod;
        }
        while(r>q[i].r)
        {
            res=(res-C(l,r)+mod)%mod;
            r--;
        }
        while(r<q[i].r)
        {
            r++;
            res=(res+C(l,r))%mod;
        }
        ans[q[i].id]=res;
    }
    for(ll i=1;i<=t;i++)
        printf("%lld\n",ans[i]);
    return 0;
}

 

posted @ 2018-08-03 15:02  灬从此以后灬  阅读(164)  评论(0编辑  收藏  举报