HDU 5950 Recursive sequence 递推转矩阵

Recursive sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2882    Accepted Submission(s): 1284


Problem Description
Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right. 
 

 

Input
The first line of input contains an integer t, the number of test cases. t test cases follow.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
 

 

Output
For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
 

 

Sample Input
2
3 1 2
4 1 10
 
Sample Output
85
369
 
Hint
In the first case, the third number is 85 = 2*1十2十3^4. In the second case, the third number is 93 = 2*1十1*10十3^4   and the fourth number is 369 = 2 * 10 十 93 十 4^4.
 
题意     f[n]=f[n-1]+2*f[n-2]+n^4; f[1]=a f[2]=b   求第n项
解析     直接递推肯定会超时的   所以 构造一个7*7系数矩阵 直接快速幂解出来  由于现在比较菜 只会最简单的矩阵 勉强可以写出来。。。。
 
1 2 1 0 0 0 0         f[i-1]        f[i]
1 0 0 0 0 0 0         f[i-2]        f[i-1]  
0 0 1 4 6 4 1    i^4          (i+1)^4
0 0 0 1 3 3 1       *    i^3                  =            (i+1)^3
0 0 0 0 1 2 1    i^2          (i+1)^2
0 0 0 0 0 1 1    i            i+1
0 0 0 0 0 0 1      1           1  
 
AC代码
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 const ll mod=2147493647,maxn=7;
 5 struct Matrix
 6 {
 7     ll m[maxn][maxn];
 8     Matrix()
 9     {
10         memset(m,0,sizeof(m));
11     }
12     void init()
13     {
14         for(int i=0; i<maxn; i++)
15             for(int j=0; j<maxn; j++)
16                 m[i][j]=(i==j);
17     }
18     Matrix  operator +(const Matrix &b)const
19     {
20         Matrix c;
21         for(int i=0; i<maxn; i++)
22         {
23             for(int j=0; j<maxn; j++)
24             {
25                 c.m[i][j]=(m[i][j]+b.m[i][j])%mod;
26             }
27         }
28         return c;
29     }
30     Matrix  operator *(const Matrix &b)const
31     {
32         Matrix c;
33         for(int i=0; i<maxn; i++)
34         {
35             for(int j=0; j<maxn; j++)
36             {
37                 for(int k=0; k<maxn; k++)
38                 {
39                     c.m[i][j]=(c.m[i][j]+(m[i][k]*b.m[k][j])%mod)%mod;
40                 }
41             }
42         }
43         return c;
44     }
45     Matrix  operator^(const ll &t)const
46     {
47         Matrix ans,a=(*this);
48         ans.init();
49         ll n=t;
50         while(n)
51         {
52             if(n&1) ans=ans*a;
53             a=a*a;
54             n>>=1;
55         }
56         return ans;
57     }
58 };
59 int main()
60 {
61     int t;
62     ll n,m,a,b;
63     scanf("%d",&t);
64     while(t--)
65     {
66         scanf("%lld %lld %lld",&n,&a,&b);
67         if(n==1)
68         {
69             cout<<a%mod<<endl;
70             continue;
71         }
72         if(n==2)
73         {
74             cout<<b%mod<<endl;
75             continue;
76         }
77         Matrix temp;
78         temp.m[0][0]=1,temp.m[0][1]=2,temp.m[0][2]=1,temp.m[0][3]=0,temp.m[0][4]=0,temp.m[0][5]=0;temp.m[0][6]=0;
79         temp.m[1][0]=1,temp.m[1][1]=0,temp.m[1][2]=0,temp.m[1][3]=0,temp.m[1][4]=0,temp.m[1][5]=0;temp.m[1][6]=0;
80         temp.m[2][0]=0,temp.m[2][1]=0,temp.m[2][2]=1,temp.m[2][3]=4,temp.m[2][4]=6,temp.m[2][5]=4;temp.m[2][6]=1;
81         temp.m[3][0]=0,temp.m[3][1]=0,temp.m[3][2]=0,temp.m[3][3]=1,temp.m[3][4]=3,temp.m[3][5]=3;temp.m[3][6]=1;
82         temp.m[4][0]=0,temp.m[4][1]=0,temp.m[4][2]=0,temp.m[4][3]=0,temp.m[4][4]=1,temp.m[4][5]=2;temp.m[4][6]=1;
83         temp.m[5][0]=0,temp.m[5][1]=0,temp.m[5][2]=0,temp.m[5][3]=0,temp.m[5][4]=0,temp.m[5][5]=1;temp.m[5][6]=1;
84         temp.m[6][0]=0,temp.m[6][1]=0,temp.m[6][2]=0,temp.m[6][3]=0,temp.m[6][4]=0,temp.m[6][5]=0;temp.m[6][6]=1;
85         Matrix aa,bb;
86         bb.m[0][0]=b%mod;
87         bb.m[1][0]=a%mod;
88         bb.m[2][0]=81;
89         bb.m[3][0]=27;
90         bb.m[4][0]=9;
91         bb.m[5][0]=3;
92         bb.m[6][0]=1;
93         aa=temp^(n-2);
94         aa=aa*bb;
95         cout<<aa.m[0][0]%mod<<endl;
96     }
97     return 0;
98 }

 

    
posted @ 2018-05-09 22:02  灬从此以后灬  阅读(550)  评论(0编辑  收藏  举报