HDU 1394 线段树求逆序对
Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 25905 Accepted Submission(s): 15250
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
题意:一个长度为n 的 0-n-1 的全排列 你可以进行若干次操作 把第一个数放到最后面 形成一个新的序列(最多n个)问所有序列中逆序对最少的数量。
解析:逆序对很好求 对于每一个数看它前面有多少个比它大的记为sum[ a[i] ] sigmasum[] 就是逆序的数量 每个位置都如此,线段树就是每次查询[a[i],n-1] 的个数;
假如当前序列的逆序对是ans 那么把当前第一个数a[i] 放到最后面 后面对于每个数[0,a[i]) sum[ ] 就会少一次 同样 sum[ a[i] ] = n-1-a[i]
所以 操作之后就是 ans+=n-a[i]+n-1-a[i]。取最大值就好了
#include <bits/stdc++.h> #define pb push_back #define mp make_pair #define fi first #define se second #define all(a) (a).begin(), (a).end() #define fillchar(a, x) memset(a, x, sizeof(a)) #define huan printf("\n") #define debug(a,b) cout<<a<<" "<<b<<" "<<endl #define ffread(a) fastIO::read(a) using namespace std; typedef long long ll; const int maxn = 1e4+10; const int inf = 0x3f3f3f3f; const int mod = 100000007; const double epx = 1e-6; const double pi = acos(-1.0); //head----------------------------------------------------------------- int sum[maxn*4]; void PushUp(int rt) { sum[rt]=sum[rt<<1]+sum[rt<<1|1]; } void build(int l,int r,int rt) { if(l==r) { sum[rt]=0; return; } int mid=(l+r)>>1; build(l,mid,rt<<1); build(mid+1,r,rt<<1|1); PushUp(rt); } void update(int x,int val,int l,int r,int rt) { if(l==x&&r==x) { sum[rt]+=val; return; } int mid=(l+r)>>1; if(x<=mid) update(x,val,l,mid,rt<<1); else update(x,val,mid+1,r,rt<<1|1); PushUp(rt); } int query(int L,int R,int l,int r,int rt) { if(L<=l&&R>=r) { return sum[rt]; } int mid=(l+r)>>1; int ans=0; if(L<=mid) ans+=query(L,R,l,mid,rt<<1); if(R>mid) ans+=query(L,R,mid+1,r,rt<<1|1); return ans; } int a[maxn]; int main() { int n; while(scanf("%d",&n)!=EOF) { fillchar(sum,0); int ans=0; for(int i=1;i<=n;i++) { scanf("%d",&a[i]); update(a[i]+1,1,1,n,1); //出于方便从1开始 ans+=query(a[i]+2,n,1,n,1); } int ret=inf; for(int i=1;i<=n;i++) { ans+=n-2*a[i]-1; ret=min(ans,ret); } printf("%d\n",ret); } }
复习一下线段树基础。。