【洛谷P2178】品酒大会

题目

题目链接:https://www.luogu.com.cn/problem/P2178
一年一度的“幻影阁夏日品酒大会”隆重开幕了。大会包含品尝和趣味挑战 两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个奖项,吸引了众多品酒师参加。
在大会的晚餐上,调酒师 Rainbow 调制了 \(n\) 杯鸡尾酒。这 \(n\) 杯鸡尾酒排成一行,其中第 \(n\) 杯酒 (\(1 ≤ i ≤ n\)) 被贴上了一个标签 \(s_i\) ,每个标签都是 \(26\) 个小写 英文字母之一。设 \(str(l, r)\) 表示第 \(l\) 杯酒到第 \(r\) 杯酒的 \(r - l + 1\) 个标签顺次连接构成的字符串。若 \(str(p, p_0) = str(q, q_0)\),其中 \(1 ≤ p ≤ p_0 ≤ n\), \(1 ≤ q ≤ q_0 ≤ n\), \(p ≠ q\)\(p_0-p+1 = q_0 - q + 1 = r\) ,则称第 \(p\) 杯酒与第 \(q\) 杯酒是“ \(r\) 相似” 的。当然两杯“ \(r\) 相似”(\(r > 1\))的酒同时也是“ \(1\) 相似”、“ \(2\) 相似”、……、“ \((r - 1)\) 相似”的。特别地,对于任意的 \(1 ≤ p ,q ≤ n,p ≠ q\),第 \(p\) 杯酒和第 \(q\) 杯酒都 是“ \(0\) 相似”的。
在品尝环节上,品酒师 Freda 轻松地评定了每一杯酒的美味度,凭借其专业的水准和经验成功夺取了“首席品酒家”的称号,其中第 \(i\) 杯酒 (\(1 ≤ i ≤ n\)) 的 美味度为 \(a_i\) 。现在 Rainbow 公布了挑战环节的问题:本次大会调制的鸡尾酒有一个特点,如果把第 \(p\) 杯酒与第 \(q\) 杯酒调兑在一起,将得到一杯美味度为 \(a_p\times a_q\) 的 酒。现在请各位品酒师分别对于 \(r = 0,1,2,⋯,n-1\) ,统计出有多少种方法可以 选出 \(2\) 杯“ \(r\) 相似”的酒,并回答选择 \(2\) 杯“\(r\) 相似”的酒调兑可以得到的美味度的最大值。

思路

直接上后缀数组求出 height,然后按照 height 从大到小枚举,并查集合并两个块,同时维护好每个块中的最大值,最小值和大小即可。
时间复杂度 \(O(n\log n)\)

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N=300010;
int n,m,a[N],sa[N],rk[N],x[N],y[N],c[N],height[N],father[N],siz[N],maxa[N],mina[N];
ll ans[N][2];
char s[N];
vector<int> pos[N];

void SA()
{
	for (int i=1;i<=n;i++) x[i]=s[i],c[x[i]]++;
	for (int i=2;i<=m;i++) c[i]+=c[i-1];
	for (int i=n;i>=1;i--) sa[c[x[i]]--]=i;
	for (int k=1;k<=n;k<<=1)
	{
		int num=0;
		for (int i=n-k+1;i<=n;i++) y[++num]=i;
		for (int i=1;i<=n;i++) if (sa[i]>k) y[++num]=sa[i]-k;
		for (int i=1;i<=m;i++) c[i]=0;
		for (int i=1;i<=n;i++) c[x[i]]++;
		for (int i=2;i<=m;i++) c[i]+=c[i-1];
		for (int i=n;i>=1;i--) sa[c[x[y[i]]]--]=y[i],y[i]=0;
		swap(x,y);
		x[sa[1]]=num=1;
		for (int i=2;i<=n;i++)
			x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
		m=num;
		if (n==m) break;
	}
}

void geth()
{
	for (int i=1;i<=n;i++) rk[sa[i]]=i;
	for (int i=1,k=0;i<=n;i++)
	{
		if (k) k--;
		int j=sa[rk[i]-1];
		while (s[i+k]==s[j+k]) k++;
		height[rk[i]]=k;
	}
}

int find(int x)
{
	return x==father[x]?x:father[x]=find(father[x]);
}

int main()
{
	scanf("%d%s",&n,s+1);
	for (int i=1;i<=n;i++) scanf("%d",&a[i]);
	m='z'+1;
	SA(); geth();
	for (int i=1;i<=n;i++)
	{
		pos[height[i]].push_back(i);
		father[i]=i; siz[i]=1; maxa[i]=mina[i]=a[sa[i]];
	}
	ans[n][1]=-5e18;
	for (int i=n-1;i>=0;i--)
	{
		ans[i][0]=ans[i+1][0]; ans[i][1]=ans[i+1][1];
		for (int j=0;j<pos[i].size();j++)
		{
			int x=find(pos[i][j]),y=find(pos[i][j]-1);
			if (x!=y)
			{
				ans[i][0]+=1LL*siz[x]*siz[y];
				ans[i][1]=max(ans[i][1],max(1LL*maxa[x]*maxa[y],1LL*mina[x]*mina[y]));
				ans[i][1]=max(ans[i][1],max(1LL*mina[x]*maxa[y],1LL*maxa[x]*mina[y]));
				if (siz[x]<siz[y])
				{
					siz[y]+=siz[x]; father[x]=y;
					maxa[y]=max(maxa[y],maxa[x]);
					mina[y]=min(mina[y],mina[x]);
				}
				else
				{
					siz[x]+=siz[y]; father[y]=x;
					maxa[x]=max(maxa[x],maxa[y]);
					mina[x]=min(mina[x],mina[y]);
				}
			}
		}
	}
	for (int i=0;i<n;i++)
	{
		if (ans[i][1]==-5e18) ans[i][1]=0;
		printf("%lld %lld\n",ans[i][0],ans[i][1]);
	}
	return 0;
}
posted @ 2021-01-05 14:22  stoorz  阅读(67)  评论(0编辑  收藏  举报