【CF613D】Kingdom and its Cities
题目
题目链接:https://codeforces.com/problemset/problem/613/D
一个王国有 \(n\) 座城市,城市之间由 \(n-1\) 条道路相连,形成一个树结构,国王决定将一些城市设为重要城市。
这个国家有的时候会遭受外敌入侵,重要城市由于加强了防护,一定不会被占领。而非重要城市一旦被占领,这座城市就不能通行。
国王定了若干选择重要城市的计划,他想知道,对于每个计划,外敌至少要占领多少个非重要城市,才会导致重要城市之间两两不连通。如果外敌无论如何都不可能导致这种局面,输出-1。
\(1\leq n,q,\sum^{q}_{i=1}m_i\leq 10^5\)
思路
先考虑只有一个询问怎么做。首先很明显的一点是,输出 -1 的充要条件是存在两个重要节点相邻。
排除这种情况后,剩余的就是有解的。
设 \(cnt_x\) 表示 \(x\) 的子树中没有被截断的(与 \(x\) 通过若干条边相连的)点有多少个。注意不包括 \(x\) 本身。
那么
- 如果 \(key[x]=1\),那么对于这 \(cnt_x\) 个点都要割掉一条边,\(ans\) 加上 \(cnt_x\)。
- 如果 \(key[x]=0\),那么
- 如果 \(cnt[x]=1\),那么现在没必要割,显然留到后面割肯定更优。
- 如果 \(cnt[x]>1\),那么必须割掉 \(x\),\(ans\) 加一。
这样就可以在 \(O(n)\) 的复杂度内解决这个问题。
但是现在有多组询问,我们发现 \(\sum m\leq 10^5\),而每次询问我们只需要知道关键节点之间的信息,所以构建虚树即可。
时间复杂度 \(O(n\log n)\)。
代码
#include <set>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=100010,LG=20;
int n,m,Q,tot,top,ans,a[N],dfn[N],head[N],st[N],f[N][LG+1],dep[N];
bool flag,key[N];
set<int> vis;
struct edge
{
int next,to;
}e[N*2];
void add(int from,int to)
{
e[++tot].to=to;
e[tot].next=head[from];
head[from]=tot;
if (vis.find(from)==vis.end()) vis.insert(from);
if (vis.find(to)==vis.end()) vis.insert(to);
}
bool cmp(int x,int y)
{
return dfn[x]<dfn[y];
}
void dfs(int x,int fa)
{
dfn[x]=++tot;
f[x][0]=fa; dep[x]=dep[fa]+1;
for (int i=1;i<=LG;i++)
f[x][i]=f[f[x][i-1]][i-1];
for (int i=head[x];~i;i=e[i].next)
if (e[i].to!=fa) dfs(e[i].to,x);
}
int lca(int x,int y)
{
if (dep[x]<dep[y]) swap(x,y);
for (int i=LG;i>=0;i--)
if (dep[f[x][i]]>=dep[y]) x=f[x][i];
if (x==y) return x;
for (int i=LG;i>=0;i--)
if (f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][0];
}
bool build()
{
st[++top]=0;
sort(a+1,a+1+m,cmp);
for (int i=1;i<=m;i++)
{
int p=lca(a[i],st[top]);
if (p!=st[top])
{
while (dep[st[top-1]]>dep[p])
{
add(st[top-1],st[top]);
top--;
}
add(p,st[top]); top--;
if (st[top]!=p) st[++top]=p;
}
st[++top]=a[i];
}
for (int i=top;i>=2;i--)
add(st[i-1],st[i]);
}
int dfs2(int x)
{
int cnt=0;
for (int i=head[x];~i;i=e[i].next)
{
int v=e[i].to;
cnt+=dfs2(v);
if (key[v] && key[x] && dep[v]==dep[x]+1) flag=1;
if (flag) return -1;
}
if (key[x]) ans+=cnt,cnt=1;
else if (cnt>1) ans++,cnt=0;
return cnt;
}
int main()
{
memset(head,-1,sizeof(head));
scanf("%d",&n);
for (int i=1,x,y;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y); add(y,x);
}
tot=0; dfs(1,0);
memset(head,-1,sizeof(head));
tot=0;
scanf("%d",&Q);
while (Q--)
{
scanf("%d",&m);
for (int i=1;i<=m;i++)
{
scanf("%d",&a[i]);
key[a[i]]=1;
}
build();
dfs2(0);
if (flag) printf("-1\n");
else printf("%d\n",ans);
for (set<int>::iterator it=vis.begin();it!=vis.end();it++)
head[*it]=-1,key[*it]=0;
vis.clear();
flag=tot=ans=top=0;
}
return 0;
}