MySql批量插入数据
MySql批量插入数据
学习了:http://blog.csdn.net/frinder/article/details/38830723
膜拜一下,把原文引过来:
因前段时间去面试,问到如何高效向数据库插入10万条记录,之前没处理过类似问题,也没看过相关资料,结果没答上来,今天就查了些资料,总结出三种方法: 测试数据库为MySQL!!! 方法一: [java] view plain copy 在CODE上查看代码片派生到我的代码片 public static void insert() { // 开时时间 Long begin = new Date().getTime(); // sql前缀 String prefix = "INSERT INTO tb_big_data (count, create_time, random) VALUES "; try { // 保存sql后缀 StringBuffer suffix = new StringBuffer(); // 设置事务为非自动提交 conn.setAutoCommit(false); // Statement st = conn.createStatement(); // 比起st,pst会更好些 PreparedStatement pst = conn.prepareStatement(""); // 外层循环,总提交事务次数 for (int i = 1; i <= 100; i++) { // 第次提交步长 for (int j = 1; j <= 10000; j++) { // 构建sql后缀 suffix.append("(" + j * i + ", SYSDATE(), " + i * j * Math.random() + "),"); } // 构建完整sql String sql = prefix + suffix.substring(0, suffix.length() - 1); // 添加执行sql pst.addBatch(sql); // 执行操作 pst.executeBatch(); // 提交事务 conn.commit(); // 清空上一次添加的数据 suffix = new StringBuffer(); } // 头等连接 pst.close(); conn.close(); } catch (SQLException e) { e.printStackTrace(); } // 结束时间 Long end = new Date().getTime(); // 耗时 System.out.println("cast : " + (end - begin) / 1000 + " ms"); } 输出时间:cast : 23 ms 该方法目前测试是效率最高的方法! 方法二: [java] view plain copy 在CODE上查看代码片派生到我的代码片 public static void insertRelease() { Long begin = new Date().getTime(); String sql = "INSERT INTO tb_big_data (count, create_time, random) VALUES (?, SYSDATE(), ?)"; try { conn.setAutoCommit(false); PreparedStatement pst = conn.prepareStatement(sql); for (int i = 1; i <= 100; i++) { for (int k = 1; k <= 10000; k++) { pst.setLong(1, k * i); pst.setLong(2, k * i); pst.addBatch(); } pst.executeBatch(); conn.commit(); } pst.close(); conn.close(); } catch (SQLException e) { e.printStackTrace(); } Long end = new Date().getTime(); System.out.println("cast : " + (end - begin) / 1000 + " ms"); } 注:注释就没有了,和上面类同,下面会有分析! 控制台输出:cast : 111 ms 执行时间是上面方法的5倍! 方法三: [java] view plain copy 在CODE上查看代码片派生到我的代码片 public static void insertBigData(SpringBatchHandler sbh) { Long begin = new Date().getTime(); JdbcTemplate jdbcTemplate = sbh.getJdbcTemplate(); final int count = 10000; String sql = "INSERT INTO tb_big_data (count, create_time, random) VALUES (?, SYSDATE(), ?)"; jdbcTemplate.batchUpdate(sql, new BatchPreparedStatementSetter() { // 为prepared statement设置参数。这个方法将在整个过程中被调用的次数 public void setValues(PreparedStatement pst, int i) throws SQLException { pst.setLong(1, i); pst.setInt(2, i); } // 返回更新的结果集条数 public int getBatchSize() { return count; } }); Long end = new Date().getTime(); System.out.println("cast : " + (end - begin) / 1000 + " ms"); } 该方法采用的是spring batchUpdate执行,因效率问题,数据量只有1万条! 执行时间:cast : 387 ms 总结:方法一和方法二很类同,唯一不同的是方法一采用的是“insert into tb (...) values(...),(...)...;”的方式执行插入操作, 方法二则是“insert into tb (...) values (...);insert into tb (...) values (...);...”的方式,要不是测试,我也不知道两者差别是如此之大! 当然,这个只是目前的测试,具体执行时间和步长也有很大关系!如过把步长改为100,可能方法就要几分钟了吧,这个可以自己测试哈。。。 方法三网上很推崇,不过,效率大家也都看到了,1万条记录,耗时6分钟,可见其效率并不理想!而且方法三需要配置spring applicationContext环境才能应用! 不过,方法三在ssh/spring-mvc中可用性还是很高的! 刚才开始研究大数据方面的问题,以上也只是真实测试的结果,并不一定就是事实,有好的建议,大家请指正,谢谢! 相互学习,才能进步更快!