1. 数组之差TapeEquilibrium Minimize the value |(A[0] + ... + A[P-1]) - (A[P] + ... + A[N-1])|.
数组之差
package com.code; public class Test03_3 { public static int solution(int[] A) { int size = A.length; if (size<2){ return -1; } int [] rightSum = new int[size]; rightSum[size-1] = A[size-1]; for(int i=size-2;i>=0;i--){ rightSum[i] = A[i]+rightSum[i+1]; } int [] leftSum = new int[size]; leftSum[0] = A[0]; for(int i=1;i<size-1;i++){ leftSum[i] = A[i]+leftSum[i-1]; } int min = 2147483647; for(int i=0;i<size-1;i++){ min = Math.min(min, Math.abs(leftSum[i]-rightSum[i+1])); } return min; } public static void main(String[] args) { int a [] = {3,1,2,4,3}; System.out.println(solution(a)); int b[] = {1,3}; System.out.println(solution(b)); } } /** A non-empty zero-indexed array A consisting of N integers is given. Array A represents numbers on a tape. Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1]. The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])| In other words, it is the absolute difference between the sum of the first part and the sum of the second part. For example, consider array A such that: A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 4 A[4] = 3 We can split this tape in four places: P = 1, difference = |3 − 10| = 7 P = 2, difference = |4 − 9| = 5 P = 3, difference = |6 − 7| = 1 P = 4, difference = |10 − 3| = 7 Write a function: class Solution { public int solution(int[] A); } that, given a non-empty zero-indexed array A of N integers, returns the minimal difference that can be achieved. For example, given: A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 4 A[4] = 3 the function should return 1, as explained above. Assume that: N is an integer within the range [2..100,000]; each element of array A is an integer within the range [−1,000..1,000]. Complexity: expected worst-case time complexity is O(N); expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments). Elements of input arrays can be modified. */