事务简单介绍

 

事务必须满足传统事务的特性,即原子性,一致性,分离性和持久性。

 

数据库事务隔离级别

由低到高分别为Read uncommitted 、Read committed 、Repeatable read 、Serializable 。而且,在事务的并发操作中可能会出现脏读,不可重复读,幻读。下面通过事例一一阐述它们的概念与联系。


Read uncommitted

读未提交,顾名思义,就是一个事务可以读取另一个未提交事务的数据。

事例:老板要给程序员发工资,程序员的工资是3.6万/月。但是发工资时老板不小心按错了数字,按成3.9万/月,该钱已经打到程序员的户口,但是事务还没有提交,就在这时,程序员去查看自己这个月的工资,发现比往常多了3千元,以为涨工资了非常高兴。但是老板及时发现了不对,马上回滚差点就提交了的事务,将数字改成3.6万再提交。

分析:实际程序员这个月的工资还是3.6万,但是程序员看到的是3.9万。他看到的是老板还没提交事务时的数据。这就是脏读。


那怎么解决脏读呢?Read committed!读提交,能解决脏读问题。


Read committed

读提交,顾名思义,就是一个事务要等另一个事务提交后才能读取数据。

事例:程序员拿着信用卡去享受生活(卡里当然是只有3.6万),当他埋单时(程序员事务开启),收费系统事先检测到他的卡里有3.6万,就在这个时候!!程序员的妻子要把钱全部转出充当家用,并提交。当收费系统准备扣款时,再检测卡里的金额,发现已经没钱了(第二次检测金额当然要等待妻子转出金额事务提交完)。程序员就会很郁闷,明明卡里是有钱的…

分析:这就是读提交,若有事务对数据进行更新(UPDATE)操作时,读操作事务要等待这个更新操作事务提交后才能读取数据,可以解决脏读问题。但在这个事例中,出现了一个事务范围内两个相同的查询却返回了不同数据,这就是不可重复读。


那怎么解决可能的不可重复读问题?Repeatable read !


Repeatable read

重复读,就是在开始读取数据(事务开启)时,不再允许修改操作

事例:程序员拿着信用卡去享受生活(卡里当然是只有3.6万),当他埋单时(事务开启,不允许其他事务的UPDATE修改操作),收费系统事先检测到他的卡里有3.6万。这个时候他的妻子不能转出金额了。接下来收费系统就可以扣款了。

分析:重复读可以解决不可重复读问题。写到这里,应该明白的一点就是,不可重复读对应的是修改,即UPDATE操作。但是可能还会有幻读问题。因为幻读问题对应的是插入INSERT操作,而不是UPDATE操作。


什么时候会出现幻读?

事例:程序员某一天去消费,花了2千元,然后他的妻子去查看他今天的消费记录(全表扫描FTS,妻子事务开启),看到确实是花了2千元,就在这个时候,程序员花了1万买了一部电脑,即新增INSERT了一条消费记录,并提交。当妻子打印程序员的消费记录清单时(妻子事务提交),发现花了1.2万元,似乎出现了幻觉,这就是幻读。


那怎么解决幻读问题?Serializable!


Serializable 序列化

Serializable 是最高的事务隔离级别,在该级别下,事务串行化顺序执行,可以避免脏读、不可重复读与幻读。但是这种事务隔离级别效率低下,比较耗数据库性能,一般不使用。


值得一提的是:大多数数据库默认的事务隔离级别是Read committed,比如Sql Server , OracleMySQL的默认隔离级别是Repeatable read。

 

Spring事务的隔离级别

 1. ISOLATION_DEFAULT: 这是一个PlatfromTransactionManager默认的隔离级别,使用数据库默认的事务隔离级别. 另外四个与JDBC的隔离级别相对应

 2. ISOLATION_READ_UNCOMMITTED: 这是事务最低的隔离级别,它充许令外一个事务可以看到这个事务未提交的数据。这种隔离级别会产生脏读,不可重复读和幻像读。

 3. ISOLATION_READ_COMMITTED: 保证一个事务修改的数据提交后才能被另外一个事务读取。另外一个事务不能读取该事务未提交的数据

 4. ISOLATION_REPEATABLE_READ: 这种事务隔离级别可以防止脏读,不可重复读。但是可能出现幻像读。它除了保证一个事务不能读取另一个事务未提交的数据外,还保证了避免下面的情况产生(不可重复读)。

 5. ISOLATION_SERIALIZABLE 这是花费最高代价但是最可靠的事务隔离级别。事务被处理为顺序执行。 除了防止脏读,不可重复读外,还避免了幻像读。

 

分布式事务

XA介绍

 

XA是由X/Open组织提出的分布式事务的规范。XA规范主要 定义了(全局)事务管理器(Transaction Manager)和(局部)资源管理器(Resource Manager)之间的接口。
XA接口是双向的系统接口,在事务管理器(Transaction Manager)以及一个或多个资源管理器(Resource Manager)之间形成通信桥梁。
XA之所以需要引入事务管理器是因为,在分布式系统中,从理论上讲(参考Fischer等的论文),两台机器理论上无 法达到一致的状态,需要引入一个单点进行协调。
事务管理器控制着全局事务,管理事务生命周期,并协调资源。资源管理器负责控制和管理实际资源(如数据库或 JMS队列)。
下图说明了事务管理器、资源管理器,与应用程序之间的关系:

 

 

两阶段提交协议

在分布式事务的控制中采用了两阶段提交协议(Two- Phase Commit Protocol)。即事务的提交分为两个阶段:

  预提交阶段(Pre-Commit Phase)
  决策后阶段(Post-Decision Phase)

在一个分布式事务中,必须有一个场地的Server作为协调者(coordinator),它能向 其它场地的Server发出请求,并对它们的回答作出响应,由它来控制一个分布式事务的提交或撤消。该分布式事务中涉及到的其它场地的Server称为参 与者(Participant)。

事务两阶段提交的过程如下:
  ● 两阶段提交在应用程序向协调者发出一个提交命令时被启动。这时提交进入第一阶段,即预提交阶段。在这一阶段中:
  (1) 协调者准备局部(即在本地)提交并在日志中写入"预提交"日志项,并包含有该事务的所有参与者的名字。
   (2) 协调者询问参与者能否提交该事务。一个参与者可能由于多种原因不能提交。例如,该Server提供的约束条件(Constraints)的延迟检查不符合 限制条件时,不能提交;参与者本身的Server进程或硬件发生故障,不能提交;或者协调者访问不到某参与者(网络故障),这时协调者都认为是收到了一个 否定的回答。
  (3) 如果参与者能够提交,则在其本身的日志中写入"准备提交"日志项,该日志项立即写入硬盘,然后给协调者发回,已准备好提交"的回答。
  (4) 协调者等待所有参与者的回答,如果有参与者发回否定的回答,则协调者撤消该事务并给所有参与者发出一个"撤消该事务"的消息,结束该分布式事务,撤消该事务的所有影响。

  ● 如果所有的参与者都送回"已准备好提交"的消息,则该事务的提交进入第二阶段,即决策后提交阶段。在这一阶段中:
  (1) 协调者在日志中写入"提交"日志项,并立即写入硬盘。
  (2) 协调者向参与者发出"提交该事务"的命令。各参与者接到该命令后,在各自的日志中写入"提交"日志项,并立即写入硬盘。然后送回"已提交"的消息,释放该事务占用的资源。 
  (3) 当所有的参与者都送回"已提交"的消息后,协调者在日志中写入"事务提交完成"日志项,释放协调者占用的资源 。这样,完成了该分布式事务的提交。

     现如今实现基于两阶段提交的分布式事务也没那么困难了,如果使用java,那么可以使用开源软件atomikos来快速实现。

     缺点

  不过但凡使用过的上述两阶段提交的同学都可以发现性能实在是太差,根本不适合高并发的系统。为什么?

  1)两阶段提交涉及多次节点间的网络通信,通信时间太长!

  2)事务时间相对于变长了,锁定的资源的时间也变长了,造成资源等待时间也增加好多。

 

使用消息队列避免分布式事务

1 业务与消息耦合的方式

  用户A在完成扣款的同时,同时记录消息数据,这个消息数据与业务数据保存在同一数据库实例里(消息记录表表名为message);

Begin transaction
update A set amount=amount-10000 where userId=1;
insert into message(userId, amount,status) values(1, 10000, 1);
End transaction
commit;

  上述事务能保证只要用户A账户里被扣了钱,消息一定能保存下来。

  当上述事务提交成功后,我们通过实时消息服务将此消息通知用户B,用户B处理成功后发送回复成功消息,用户A收到回复后删除该条消息数据。

2 业务与消息解耦方式

  上述保存消息的方式使得消息数据和业务数据紧耦合在一起,从架构上看不够优雅,而且容易诱发其他问题。为了解耦,可以采用以下方式。

  1)用户A在扣款事务提交之前,向实时消息服务请求发送消息,实时消息服务只记录消息数据,而不真正发送,只有消息发送成功后才会提交事务;

  2)当用户A扣款事务被提交成功后,向实时消息服务确认发送。只有在得到确认发送指令后,实时消息服务才真正发送该消息;

  3)当用户A扣款事务提交失败回滚后,向实时消息服务取消发送。在得到取消发送指令后,该消息将不会被发送;

  4)对于那些未确认的消息或者取消的消息,需要有一个消息状态确认系统定时去用户A系统查询这个消息的状态并进行更新。为什么需要这一步骤,
举个例子:假设在第2步用户A扣款事务被成功提交后,系统挂了,此时消息状态并未被更新为“确认发送”,从而导致消息不能被发送。

  优点:消息数据独立存储,降低业务系统与消息系统间的耦合;

  缺点:一次消息发送需要两次请求;业务处理服务需要实现消息状态回查接口。

3 如何解决消息重复投递的问题

  还有一个很严重的问题就是消息重复投递,以我们用户A转账到用户B为例,如果相同的消息被重复投递两次,那么我们用户B账户将会增加2万而不是1万了。

  为什么相同的消息会被重复投递?比如用户B处理完消息msg后,发送了处理成功的消息给用户A,正常情况下用户A应该要删除消息msg,但如果用户A这时候悲剧的挂了,
重启后一看消息msg还在,就会继续发送消息msg。

  解决方法很简单,在用户B这边增加消息应用状态表(message_apply),通俗来说就是个账本,用于记录消息的消费情况,每次来一个消息,
在真正执行之前,先去消息应用状态表中查询一遍,如果找到说明是重复消息,丢弃即可,如果没找到才执行,同时插入到消息应用状态表(同一事务)。

 

参考

浅谈分布式事务

理解事务的4种隔离级别

 

posted @ 2017-04-28 10:07  简单的竹子  阅读(258)  评论(0编辑  收藏  举报