Fork me on GitHub

kafka系列 -- 多线程消费者实现

看了一下kafka,然后写了消费Kafka数据的代码。感觉自己功力还是不够。

  1. 不能随心所欲地操作数据,数据结构没学好,spark的RDD操作没学好。
  2. 不能很好地组织代码结构,设计模式没学好,面向对象思想理解不够成熟。

消费程序特点

  1. 用队列来存储要消费的数据。
  2. 用队列来存储要提交的offest,然后处理线程将其给回消费者提交。
  3. 每个分区开一个处理线程来处理数据,分区与处理器的映射放在map中。
  4. 当处理到一定的数量或者距离上一次处理一定的时间间隔后, 由poll线程进行提交offset。

不好的地方:

  1. 每次处理的数据太少,而且每个数据都进行判断其分区是否已经有处理线程在处理了。
  2. 获取topic不太优雅。

流程图

下面是多线程消费者实现:

1. 管理程序

/**
 * 负责启动消费者线程MsgReceiver, 保存消费者线程MsgReceiver, 保存处理任务和线程RecordProcessor, 以及销毁这些线程
 * Created by stillcoolme on 2018/10/12.
 */
public class KafkaMultiProcessorMain {
    private static final Logger logger = LoggerFactory.getLogger(KafkaMultiProcessorMain.class);
    // 消费者参数
    private Properties consumerProps = new Properties();
    // kafka消费者参数
    Map<String, Object> consumerConfig;
    //存放topic的配置
    Map<String, Object> topicConfig;

    //订阅的topic
    private String alarmTopic;
    //消费者线程数组
    private Thread[] threads;

    //保存处理任务和线程的map
    ConcurrentHashMap<TopicPartition, RecordProcessor> recordProcessorTasks = new ConcurrentHashMap<>();
    ConcurrentHashMap<TopicPartition, Thread> recordProcessorThreads = new ConcurrentHashMap<>();

    public void setAlarmTopic(String alarmTopic) {
        this.alarmTopic = alarmTopic;
    }

    public static void main(String[] args) {
        KafkaMultiProcessorMain kafkaMultiProcessor = new KafkaMultiProcessorMain();
        //这样设置topic不够优雅啊!!!
        kafkaMultiProcessor.setAlarmTopic("picrecord");

        kafkaMultiProcessor.init(null);
    }

    private void init(String consumerPropPath) {
        getConsumerProps(consumerPropPath);
        consumerConfig = getConsumerConfig();

        int threadsNum = 3;
        logger.info("create " + threadsNum + " threads to consume kafka warn msg");
        threads = new Thread[threadsNum];
        for (int i = 0; i < threadsNum; i++) {
            MsgReceiver msgReceiver = new MsgReceiver(consumerConfig, alarmTopic, recordProcessorTasks, recordProcessorThreads);
            Thread thread = new Thread(msgReceiver);
            threads[i] = thread;
        }
        for (int i = 0; i < threadsNum; i++) {
            threads[i].start();
        }
        logger.info("finish creating" + threadsNum + " threads to consume kafka warn msg");
    }

    //销毁启动的线程
    public void destroy() {
        closeRecordProcessThreads();
        closeKafkaConsumer();
    }

    private void closeRecordProcessThreads() {
        logger.debug("start to interrupt record process threads");
        for (Map.Entry<TopicPartition, Thread> entry : recordProcessorThreads.entrySet()) {
            Thread thread = entry.getValue();
            thread.interrupt();
        }
        logger.debug("finish interrupting record process threads");
    }

    private void closeKafkaConsumer() {
        logger.debug("start to interrupt kafka consumer threads");
        //使用interrupt中断线程, 在线程的执行方法中已经设置了响应中断信号
        for (int i = 0; i < threads.length; i++) {
            threads[i].interrupt();
        }
        logger.debug("finish interrupting consumer threads");
    }

    private Map<String,Object> getConsumerConfig() {
        return ImmutableMap.<String, Object>builder()
                .put("bootstrap.servers", consumerProps.getProperty("bootstrap.servers"))
                .put("group.id", "group.id")
                .put("enable.auto.commit", "false")
                .put("session.timeout.ms", "30000")
                .put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
                .put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
                .put("max.poll.records", 1000)
                .build();

    }

    /**
     * 获取消费者参数
     *
     * @param proPath
     */
    private void getConsumerProps(String proPath) {
        InputStream inStream = null;
        try {
            if (StringUtils.isNotEmpty(proPath)) {
                inStream = new FileInputStream(proPath);
            } else {
                inStream = this.getClass().getClassLoader().getResourceAsStream("consumer.properties");
            }
            consumerProps.load(inStream);
        } catch (IOException e) {
            logger.error("读取consumer配置文件失败:" + e.getMessage(), e);
        } finally {
            if (null != inStream) {
                try {
                    inStream.close();
                } catch (IOException e) {
                    logger.error("读取consumer配置文件失败:" + e.getMessage(), e);
                }
            }
        }
    }
}

2. 消费者任务 MsgReceiver

/**
 * 负责调用 RecordProcessor进行数据处理
 * Created by zhangjianhua on 2018/10/12.
 */
public class MsgReceiver implements Runnable {

    private static final Logger logger = LoggerFactory.getLogger(MsgReceiver.class);

    private BlockingQueue<Map<TopicPartition, OffsetAndMetadata>> commitQueue = new LinkedBlockingQueue<>();

    private ConcurrentHashMap<TopicPartition, Thread> recordProcessorThreads;
    private ConcurrentHashMap<TopicPartition, RecordProcessor> recordProcessorTasks;
    private String alarmTopic;
    private Map<String, Object> consumerConfig;


    public MsgReceiver(Map<String, Object> consumerConfig, String alarmTopic,
                       ConcurrentHashMap<TopicPartition, RecordProcessor> recordProcessorTasks,
                       ConcurrentHashMap<TopicPartition, Thread> recordProcessorThreads) {

        this.consumerConfig = consumerConfig;
        this.alarmTopic = alarmTopic;
        this.recordProcessorTasks = recordProcessorTasks;
        this.recordProcessorThreads = recordProcessorThreads;
    }

    @Override
    public void run() {
        //kafka Consumer是非线程安全的,所以需要每个线程建立一个consumer
        KafkaConsumer kafkaConsumer = new KafkaConsumer(consumerConfig);
        kafkaConsumer.subscribe(Arrays.asList(alarmTopic));
        try{
            while (!Thread.currentThread().isInterrupted()) {
                try {
                    //看commitQueue里面是非有需要提交的offest, 这样查看好频繁啊!!!
                    //查看该消费者是否有需要提交的偏移信息, 使用非阻塞读取
                    Map<TopicPartition, OffsetAndMetadata> offestToCommit = commitQueue.poll();
                    if (offestToCommit != null) {
                        logger.info(Thread.currentThread().getName() + "commit offset: " + offestToCommit);
                        kafkaConsumer.commitAsync();
                    }
                    //最多轮询1000ms
                    ConsumerRecords<String, String> records = kafkaConsumer.poll(1000);
                    if (records.count() > 0) {
                        logger.info("poll records size: " + records.count());
                    }
                    for (ConsumerRecord record : records) {
                        String topic = record.topic();
                        int partition = record.partition();
                        TopicPartition topicPartition = new TopicPartition(topic, partition);
                        RecordProcessor processTask = recordProcessorTasks.get(topicPartition);
                        //每条消息都去检查
                        //如果当前分区还没有开始消费, 则就没有消费任务在map中
                        if (processTask == null) {
                            //生成新的处理任务和线程, 然后将其放入对应的map中进行保存
                            processTask = new RecordProcessor(commitQueue);
                            recordProcessorTasks.put(topicPartition, processTask);

                            Thread processTaskThread = new Thread(processTask);
                            processTaskThread.setName("Thread-for " + topicPartition.toString());
                            logger.info("start processor Thread: " + processTaskThread.getName());
                            processTaskThread.start();
                            recordProcessorThreads.put(topicPartition, processTaskThread);
                        }
                        //有 processor 可以处理该分区的 record了
                        processTask.addRecordToQueue(record);
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                    logger.warn("MsgReceiver exception " + e + " ignore it");
                }
            }
        } finally {
            kafkaConsumer.close();
        }
    }
}

3. 消息处理任务 RecordProcessor

public class RecordProcessor implements Runnable{

    private static Logger logger = LoggerFactory.getLogger(RecordProcessor.class);

    //保存MsgReceiver线程发送过来的消息
    private BlockingQueue<ConsumerRecord<String, String>> queue = new LinkedBlockingQueue<>();
    //用于向consumer线程提交消费偏移的队列
    private BlockingQueue<Map<TopicPartition, OffsetAndMetadata>> commitQueue;
    //上一次提交时间
    private LocalDateTime lastTime = LocalDateTime.now();
    //消费了20条数据, 就进行一次提交
    private long commitLength = 20L;
    //距离上一次提交多久, 就提交一次
    private Duration commitTime = Duration.standardSeconds(2);
    //当前该线程消费的数据条数
    private int completeTask = 0;
    //保存上一条消费的数据
    private ConsumerRecord<String, String> lastUncommittedRecord;

    public RecordProcessor(BlockingQueue<Map<TopicPartition, OffsetAndMetadata>> commitQueue) {
        this.commitQueue = commitQueue;
    }

    @Override
    public void run() {
        while(!Thread.interrupted()){
            ConsumerRecord<String, String> record = null;
            try {
                record = queue.poll(100, TimeUnit.MICROSECONDS);
                if (record != null) {
                    process(record);
                    //完成任务数加1
                    this.completeTask++;
                    //保存上一条处理记录
                    lastUncommittedRecord = record;
                }
                //提交偏移给queue中
                commitTOQueue();
            } catch (InterruptedException e) {
                //线程被interrupt,直接退出
                logger.info(Thread.currentThread() + "is interrupted");
            }

        }

    }

    //将当前的消费偏移量放到queue中, 由MsgReceiver进行提交
    private void commitTOQueue() {
        if(lastUncommittedRecord == null){
            return;
        }
        //如果消费了设定的条数, 比如又消费了commitLength消息
        boolean arrivedCommitLength = this.completeTask % commitLength == 0;
        //获取当前时间, 看是否已经到了需要提交的时间
        LocalDateTime currentTime = LocalDateTime.now();
        boolean arrivedTime = currentTime.isAfter(lastTime.plus(commitTime));

        if(arrivedCommitLength || arrivedTime){
            lastTime = currentTime;
            long offset = lastUncommittedRecord.offset();
            int partition = lastUncommittedRecord.partition();
            String topic = lastUncommittedRecord.topic();
            TopicPartition topicPartition = new TopicPartition(topic, partition);
            logger.info("partition: " + topicPartition + " submit offset: " + (offset + 1L) + " to consumer task");
            Map<TopicPartition, OffsetAndMetadata> map = Collections.singletonMap(topicPartition, new OffsetAndMetadata(offset + 1L));
            commitQueue.add(map);
            //置空
            lastUncommittedRecord = null;
        }
    }

    //consumer线程向处理线程的队列中添加record
    public void addRecordToQueue(ConsumerRecord<String, String> record) {
        try {
            queue.put(record);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    private void process(ConsumerRecord<String, String> record) {
        //具体业务逻辑
        //System.out.println(record);
    }
}

改进

  1. 对处理程序RecordProcessor进行抽象,抽象出BasePropessor父类。以后业务需求需要不同的处理程序RecordProcessor就可以灵活改变了。
  2. 反射来构建RecordProcessor??在配置文件配置具体要new的RecordProcessor类路径,然后在创建MsgReceiver的时候传递进去。

参考

  1. Kafka Consumer多线程实例 : 如这篇文章所说的维护了多个worker来做具体业务处理,这篇文章用的是ThreadPoolExecutor线程池。
posted @ 2018-10-12 22:22  stillcoolme  阅读(9329)  评论(1编辑  收藏  举报