[PAT]1064 Complete Binary Search Tree (30 分)

一、题意

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10
1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

 二、题解

题意:输入一串数字,要求将其构成一个二叉搜索树,并且也是完全二叉树。最后输出树的层次遍历。

二叉搜索树需要满足任一节点的左孩子都小于自己,右孩子都大于或者等于自己。完全二叉树需要满足,除最后一层外,二叉树的所有层都必须是满的,即除了倒数第1层(叶节点)、倒数第2层外,所有的节点都有两个孩子。

分析:首先对这串数字从小到大排序,然后使用递归建树,建完树后再层次遍历。

在建树的时候,维持两个变量:l、r,记录建树所需要的数字在已知串中的下表,然后找到树的根节点所在的下标mid,新建节点。然后再用下标[l,mid-1]之间的数字建左子树,[mid+1,r]之间的数字建右子树。

最后层次遍历。

AC代码:

#include <bits/stdc++.h>

using namespace std;
struct node {
    int val;
    node* left;
    node* right;
    node(int val, node* left = NULL, node* right = NULL) {
        this->val = val;
        this->left = left;
        this->right = right;
    }

};

vector<int> nums;
node* createTree(int l, int r) {
    if(l>r){
        return NULL;
    }
    if(l==r) {
        node* tempnode = new node(nums[l]);
        return tempnode;
    } else {
        //一共n个
        int n = r-l+1;
        //找几层
        int level = 0;

        for(int i=1; ; i++) {
            if((int)pow(2, i)-1<=n && pow(2,i+1)-1 > n) {
                level = i;
                break;
            }
        }
        int buttom = n-((int)pow(2, level)-1);//最下层的数量
        int but = pow(2, level);//最下层最多的个数

        //最下层左右的数量
        int butleft = buttom>=but/2 ? but/2 : buttom;
        int butright = buttom>=but/2? buttom-(but/2) : 0;

        int top = n - buttom;//上层的数量
        int halftop = (top-1)/2;

        //middle的下标是:l+左子树的数量
        int midindex = l+butleft+halftop;
        node* tempnode = new node(nums[midindex]);
        tempnode->left = createTree(l, midindex-1);
        tempnode->right = createTree(midindex+1, r);
        return tempnode;
    }

}


int main() {
    int n;
    cin>>n;
    nums.resize(n);

    for(int i=0; i<n; i++) {
        int temp;
        cin>>temp;
        nums[i] = temp;
    }

    sort(nums.begin(), nums.end());

    node* root = createTree(0, n-1);
    vector<int> ans;

    queue<node*> q;
    q.push(root);
    while(!q.empty()) {
        ans.push_back(q.front()->val);
        if(q.front()->left!=NULL) {
            q.push(q.front()->left);
        }

        if(q.front()->right!=NULL) {
            q.push(q.front()->right);
        }
        q.pop();
    }

    for(int i=0; i<ans.size()-1; i++) {
        cout<<ans[i]<<" ";
    }
    cout<<ans.back()<<endl;

    return 0;
}

 

posted on 2019-09-01 09:47  刘好念  阅读(3)  评论(0编辑  收藏  举报  来源