1136 A Delayed Palindrome (20分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 with 0 for all i and ak>0. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 and is also palindromic by definition.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )
Given any positive integer, you are supposed to find its paired palindromic number.
Input Specification:
Each input file contains one test case which gives a positive integer no more than 1000 digits.
Output Specification:
For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:
A + B = C
where A
is the original number, B
is the reversed A
, and C
is their sum. A
starts being the input number, and this process ends until C
becomes a palindromic number -- in this case we print in the last line C is a palindromic number.
; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations.
instead.
Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
这题考察大数加法,我们已知一个数字,反转求和,判断是否回文数,10次循环退出。
#include <iostream> #include <cstring> #include <algorithm> using namespace std; string add(string a, string b) { int c = 0; int i = 0; string ans; while(i < a.length() && i < b.length()) { c += (a[i] - '0' + b[i] - '0'); ans += (c % 10 + '0'); c /= 10; i++; } while(i < a.length()) { c += (a[i] - '0'); ans += (c % 10 + '0'); c /= 10; i++; } while(i < b.length()) { c += (b[i] - '0'); ans += (c % 10 + '0'); c /= 10; i++; } if(c != 0) ans += (c + '0'); reverse(ans.begin(), ans.end()); return ans; } bool isPalindrome(string s) { for(int i = 0; i < s.length() >> 1; i++) if(s[i] != s[s.length() - i - 1]) return false; return true; } int main() { char asc[10000], desc[10000]; string tmp; cin >> tmp; if(isPalindrome(tmp)) { printf("%s is a palindromic number.\n", tmp.c_str()); exit(0); } for(int i = 0; i < 10; i++) { strcpy(asc, tmp.c_str()); strcpy(desc, asc); reverse(desc, desc + strlen(desc)); tmp = add(asc, desc); printf("%s + %s = %s\n", asc, desc, tmp.c_str()); if(isPalindrome(tmp)) { printf("%s is a palindromic number.\n", tmp.c_str()); exit(0); } } printf("Not found in 10 iterations.\n"); return 0; }