PAT Advanced 1081 Rational Sum (20分)
Given N rational numbers in the form numerator/denominator
, you are supposed to calculate their sum.
Input Specification:
Each input file contains one test case. Each case starts with a positive integer N (≤), followed in the next line N rational numbers a1/b1 a2/b2 ...
where all the numerators and denominators are in the range of long int. If there is a negative number, then the sign must appear in front of the numerator.
Output Specification:
For each test case, output the sum in the simplest form integer numerator/denominator
where integer
is the integer part of the sum, numerator
< denominator
, and the numerator and the denominator have no common factor. You must output only the fractional part if the integer part is 0.
Sample Input 1:
5
2/5 4/15 1/30 -2/60 8/3
Sample Output 1:
3 1/3
Sample Input 2:
2
4/3 2/3
Sample Output 2:
2
Sample Input 3:
3
1/3 -1/6 1/8
Sample Output 3:
7/24
在格式化的时候,要注意进行规整代码,乙级得考虑0这种特殊情况,防止浮点错误
#include <iostream> #include <vector> using namespace std; struct frac{ long long up, down, sign = 1; }; long long gcd(long long a, long long b) { return b == 0 ? a: gcd(b, a%b); } int main() { long long N, multi = 1, sum = 0; scanf("%lld", &N); vector<frac> v; for(int i = 0; i < N; i++) { frac tmp; scanf("%lld/%lld", &tmp.up, &tmp.down); if(tmp.up < 0) { tmp.sign = -1; tmp.up = -tmp.up; } v.push_back(tmp); multi = multi * tmp.down; } for(int i = 0; i < N; i++) sum += (multi / v[i].down * v[i].up * v[i].sign); if(sum < 0) printf("-"); if(sum == 0) { printf("0"); return 0; } sum = abs(sum); int integer = sum / multi, blank = 0; sum %= multi; if(integer > 0) { printf("%d", integer); blank = true; } long long m = gcd(multi, sum); if(sum != 0) { if(blank) printf(" "); printf("%lld", sum/m); if(multi/m != 1L) printf("/%lld", multi/m); } return 0; }