"""
=======================================================================================
Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation
=======================================================================================
This is an example of applying Non-negative Matrix Factorization
and Latent Dirichlet Allocation on a corpus of documents and
extract additive models of the topic structure of the corpus.
The output is a list of topics, each represented as a list of terms
(weights are not shown).
The default parameters (n_samples / n_features / n_topics) should make
the example runnable in a couple of tens of seconds. You can try to
increase the dimensions of the problem, but be aware that the time
complexity is polynomial in NMF. In LDA, the time complexity is
proportional to (n_samples * iterations).
"""
# Author: Olivier Grisel <olivier.grisel@ensta.org>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# Chyi-Kwei Yau <chyikwei.yau@gmail.com>
# License: BSD 3 clause
from __future__ import print_function
from time import time
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import NMF, LatentDirichletAllocation
from sklearn.datasets import fetch_20newsgroups
n_samples = 2000
n_features = 1000
n_topics = 10
n_top_words = 20
def print_top_words(model, feature_names, n_top_words):
for topic_idx, topic in enumerate(model.components_):
print("Topic #%d:" % topic_idx)
print(" ".join([feature_names[i]
for i in topic.argsort()[:-n_top_words - 1:-1]]))
print()
# Load the 20 newsgroups dataset and vectorize it. We use a few heuristics
# to filter out useless terms early on: the posts are stripped of headers,
# footers and quoted replies, and common English words, words occurring in
# only one document or in at least 95% of the documents are removed.
print("Loading dataset...")
t0 = time()
dataset = fetch_20newsgroups(shuffle=True, random_state=1,
remove=('headers', 'footers', 'quotes'))
data_samples = dataset.data
print("done in %0.3fs." % (time() - t0))
# Use tf-idf features for NMF.
print("Extracting tf-idf features for NMF...")
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, #max_features=n_features,
stop_words='english')
t0 = time()
tfidf = tfidf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0))
# Use tf (raw term count) features for LDA.
print("Extracting tf features for LDA...")
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features,
stop_words='english')
t0 = time()
tf = tf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0))
# Fit the NMF model
print("Fitting the NMF model with tf-idf features,"
"n_samples=%d and n_features=%d..."
% (n_samples, n_features))
t0 = time()
nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf)
exit()
print("done in %0.3fs." % (time() - t0))
print("\nTopics in NMF model:")
tfidf_feature_names = tfidf_vectorizer.get_feature_names()
print_top_words(nmf, tfidf_feature_names, n_top_words)
print("Fitting LDA models with tf features, n_samples=%d and n_features=%d..."
% (n_samples, n_features))
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5,
learning_method='online', learning_offset=50.,
random_state=0)
t0 = time()
lda.fit(tf)
print("done in %0.3fs." % (time() - t0))
print("\nTopics in LDA model:")
tf_feature_names = tf_vectorizer.get_feature_names()
print_top_words(lda, tf_feature_names, n_top_words)