Redis 源码走读(一)事件驱动机制与命令处理

eventloop 

从 server.c 的 main 方法看起

int main(int argc, char **argv) {
.......

    aeSetBeforeSleepProc(server.el,beforeSleep);
    aeSetAfterSleepProc(server.el,afterSleep);
    aeMain(server.el);
    aeDeleteEventLoop(server.el);
    return 0;
}

aeMain.c

//在死循环中调用 aeProcessEvents 方法,处理可以执行的 time event 与 file event
// 在 server.c 的 main 函数中会被调用
void aeMain(aeEventLoop *eventLoop) {
    eventLoop->stop = 0;
    while (!eventLoop->stop) {
        if (eventLoop->beforesleep != NULL)
            eventLoop->beforesleep(eventLoop);
        aeProcessEvents(eventLoop, AE_ALL_EVENTS|AE_CALL_AFTER_SLEEP);
    }
}
/* Process every pending time event, then every pending file event
 * (that may be registered by time event callbacks just processed).
 * Without special flags the function sleeps until some file event
 * fires, or when the next time event occurs (if any).
 *
 * If flags is 0, the function does nothing and returns.
 * if flags has AE_ALL_EVENTS set, all the kind of events are processed.
 * if flags has AE_FILE_EVENTS set, file events are processed.
 * if flags has AE_TIME_EVENTS set, time events are processed.
 * if flags has AE_DONT_WAIT set the function returns ASAP until all
 * if flags has AE_CALL_AFTER_SLEEP set, the aftersleep callback is called.
 * the events that's possible to process without to wait are processed.
 *
 * The function returns the number of events processed. */
int aeProcessEvents(aeEventLoop *eventLoop, int flags)
{
........

    /* Note that we want call select() even if there are no
     * file events to process as long as we want to process time
     * events, in order to sleep until the next time event is ready
     * to fire. */
    //优先执行 time event
    if (eventLoop->maxfd != -1 ||
        ((flags & AE_TIME_EVENTS) && !(flags & AE_DONT_WAIT))) {
        int j;
        aeTimeEvent *shortest = NULL;
        struct timeval tv, *tvp;

        if (flags & AE_TIME_EVENTS && !(flags & AE_DONT_WAIT))
            //找到time event 链表里,最近的 time event
            shortest = aeSearchNearestTimer(eventLoop);
        //计算从现在起到这个time event 被执行,要等待多久
        if (shortest) {
            long now_sec, now_ms;

            aeGetTime(&now_sec, &now_ms);
            tvp = &tv;

            /* How many milliseconds we need to wait for the next
             * time event to fire? */
            long long ms =
                (shortest->when_sec - now_sec)*1000 +
                shortest->when_ms - now_ms;

            if (ms > 0) {
                tvp->tv_sec = ms/1000;
                tvp->tv_usec = (ms % 1000)*1000;
            } else {
                tvp->tv_sec = 0;
                tvp->tv_usec = 0;
            }
        } else {
            /* If we have to check for events but need to return
             * ASAP because of AE_DONT_WAIT we need to set the timeout
             * to zero */
            if (flags & AE_DONT_WAIT) {
                tv.tv_sec = tv.tv_usec = 0;
                tvp = &tv;
            } else {
                /* Otherwise we can block */
                tvp = NULL; /* wait forever */
            }
        }

        /* Call the multiplexing API, will return only on timeout or when
         * some event fires. */
        //调用 IO 多路复用的代码,找到可读写的 file event
        numevents = aeApiPoll(eventLoop, tvp);

        /* After sleep callback. */
        if (eventLoop->aftersleep != NULL && flags & AE_CALL_AFTER_SLEEP)
            eventLoop->aftersleep(eventLoop);

        //遍历 event loop 的 fired 数组对应的 fd
        for (j = 0; j < numevents; j++) {
            aeFileEvent *fe = &eventLoop->events[eventLoop->fired[j].fd];
            int mask = eventLoop->fired[j].mask;//记录了事件类型:read/write
            int fd = eventLoop->fired[j].fd;//事件的 fd
            int fired = 0; /* Number of events fired for current fd. */

            /* Normally we execute the readable event first, and the writable
             * event laster. This is useful as sometimes we may be able
             * to serve the reply of a query immediately after processing the
             * query.
             *
             * However if AE_BARRIER is set in the mask, our application is
             * asking us to do the reverse: never fire the writable event
             * after the readable. In such a case, we invert the calls.
             * This is useful when, for instance, we want to do things
             * in the beforeSleep() hook, like fsynching a file to disk,
             * before replying to a client. */
            int invert = fe->mask & AE_BARRIER;

        /* Note the "fe->mask & mask & ..." code: maybe an already
             * processed event removed an element that fired and we still
             * didn't processed, so we check if the event is still valid.
             *
             * Fire the readable event if the call sequence is not
             * inverted. */
            if (!invert && fe->mask & mask & AE_READABLE) {
                fe->rfileProc(eventLoop,fd,fe->clientData,mask);
                fired++;
            }

            /* Fire the writable event. */
            if (fe->mask & mask & AE_WRITABLE) {
                if (!fired || fe->wfileProc != fe->rfileProc) {
                    fe->wfileProc(eventLoop,fd,fe->clientData,mask);
                    fired++;
                }
            }

            /* If we have to invert the call, fire the readable event now
             * after the writable one. */
            if (invert && fe->mask & mask & AE_READABLE) {
                if (!fired || fe->wfileProc != fe->rfileProc) {
                    fe->rfileProc(eventLoop,fd,fe->clientData,mask);
                    fired++;
                }
            }

            processed++;
        }
    }
    /* Check time events */
    if (flags & AE_TIME_EVENTS)
        processed += processTimeEvents(eventLoop);

    return processed; /* return the number of processed file/time events */
}

标准的事件驱动框架,在死循环中调用aeProcessEvents方法

aeProcessEvents 方法比较长,里面会处理两种事件TimeEvent 与 FileEvent,本文关注的重点是 FileEvent

aeProcessEvents 调用 aeApiPoll 方法来查找监听的 fd 上有哪些是可用的,找到可用的 fd 之后,根据 fd 的事件类型,决定调用 wfileProc 还是rfileProc 来处理相关的事件, 本文里我们关心的是 client 发来的 command 会被如何处理,那就是rfileProc了,rfileProc的设置过程在后文中被提及

aeApiPoll 在多个文件中被实现,Redis 用条件编译的手法决定采用哪种实现,很有意思

/* Include the best multiplexing layer supported by this system.
 * The following should be ordered by performances, descending. */
 //用宏实现编译期重载,很稳
#ifdef HAVE_EVPORT
#include "ae_evport.c"
#else
    #ifdef HAVE_EPOLL
    #include "ae_epoll.c"
    #else
        #ifdef HAVE_KQUEUE
        #include "ae_kqueue.c"
        #else
        #include "ae_select.c"
        #endif
    #endif
#endif

就看最经典的 epoll 好了:

typedef struct aeApiState {
    int epfd;
    struct epoll_event *events;
} aeApiState;

//创建eventloop
static int aeApiCreate(aeEventLoop *eventLoop) {
    aeApiState *state = zmalloc(sizeof(aeApiState));

    if (!state) return -1;
    state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);
    if (!state->events) {
        zfree(state);
        return -1;
    }
    state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */
    if (state->epfd == -1) {
        zfree(state->events);
        zfree(state);
        return -1;
    }
    eventLoop->apidata = state;
    return 0;
}

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {
    aeApiState *state = eventLoop->apidata;
    struct epoll_event ee = {0}; /* avoid valgrind warning */
    /* If the fd was already monitored for some event, we need a MOD
     * operation. Otherwise we need an ADD operation. */
    int op = eventLoop->events[fd].mask == AE_NONE ?
            EPOLL_CTL_ADD : EPOLL_CTL_MOD;//epoll_ctl函数的 op 参数的可能的取值:EPOLL_CTL_ADD 注册、EPOLL_CTL_MOD 修 改、EPOLL_CTL_DEL 删除

    ee.events = 0;
    //同时修改 eventLoop 里 event 的 mask 标记,和关联的 epoll fd 所监听的事件集合
    mask |= eventLoop->events[fd].mask; /* Merge old events */
    if (mask & AE_READABLE) ee.events |= EPOLLIN;
    if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;
    ee.data.fd = fd;
    if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;
    return 0;
}

//传入的 tvp 是 epoll 超时时间,如果 tvp 为 null,则永久阻塞
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {
    aeApiState *state = eventLoop->apidata;
    int retval, numevents = 0;

    retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,
            tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);
    if (retval > 0) {
        int j;

        numevents = retval;
        //遍历可读写的 fd
        for (j = 0; j < numevents; j++) {
            int mask = 0;
            struct epoll_event *e = state->events+j;

            if (e->events & EPOLLIN) mask |= AE_READABLE;
            if (e->events & EPOLLOUT) mask |= AE_WRITABLE;
            if (e->events & EPOLLERR) mask |= AE_WRITABLE;
            if (e->events & EPOLLHUP) mask |= AE_WRITABLE;

            //设置 eventLoop.fired 数组里的元素,这些元素代表可读写的 fd
            eventLoop->fired[j].fd = e->data.fd;
            eventLoop->fired[j].mask = mask;
        }
    }
    return numevents;
}

代码不算复杂,实际上对系统调用做了一层简单的封装

调用 epoll_ctl 方法来注册监听 fd

调用 epoll_wait 方法来等待,直到被监听的 fd 上有事件发生为止

比较有趣的做法是aeFileEvent 结构体里定义了一个 mask 属性来记录这个 fd 被监听的事件,应该是为了便于后续查找。

 

 

新 client 建立连接

networking.c

client *createClient(int fd) {
    client *c = zmalloc(sizeof(client));

    //fd == -1,说明这是一个用于执行 lua 脚本的无连接的伪客户端,可以省去一些开销
    /* passing -1 as fd it is possible to create a non connected client.
     * This is useful since all the commands needs to be executed
     * in the context of a client. When commands are executed in other
     * contexts (for instance a Lua script) we need a non connected client. */
    if (fd != -1) {
        anetNonBlock(NULL,fd);//将这个 fd 设为 non block 模式
        anetEnableTcpNoDelay(NULL,fd);//调用 setsockopt 方法,禁止使用nagle 算法,确保数据包能尽可能快速的发出去
        if (server.tcpkeepalive)
            anetKeepAlive(NULL,fd,server.tcpkeepalive);
        // 给这个 client 关联的 fd 注册 read 事件处理函数:readQueryFromClient,其定义在文件尾部
        if (aeCreateFileEvent(server.el,fd,AE_READABLE,
            readQueryFromClient, c) == AE_ERR)
        {
            close(fd);
            zfree(c);
            return NULL;
        }
    }

调用 aeCreateFileEvent 方法给这个 fd 注册 read 事件处理函数 readQueryFromClient,也就是设置到这个 fd 的 rfileProc 属性里

int aeCreateFileEvent(aeEventLoop *eventLoop, int fd, int mask,
        aeFileProc *proc, void *clientData)
{
    if (fd >= eventLoop->setsize) {
        errno = ERANGE;
        return AE_ERR;
    }
    aeFileEvent *fe = &eventLoop->events[fd];

    if (aeApiAddEvent(eventLoop, fd, mask) == -1)
        return AE_ERR;
    fe->mask |= mask;
    if (mask & AE_READABLE) fe->rfileProc = proc;
    if (mask & AE_WRITABLE) fe->wfileProc = proc;
    fe->clientData = clientData;
    if (fd > eventLoop->maxfd)
        eventLoop->maxfd = fd;
    return AE_OK;
}

 

当 client 发送 command 过来的时候,eventloop 会发现这个 fd 可读,然后调用 readQueryFromClient 进行处理

 

处理client 发送的 command

//回调函数,这个函数被触发的时候,说明 client 触发了 read 事件
void readQueryFromClient(aeEventLoop *el, int fd, void *privdata, int mask) {
.....
    /* Time to process the buffer. If the client is a master we need to
     * compute the difference between the applied offset before and after
     * processing the buffer, to understand how much of the replication stream
     * was actually applied to the master state: this quantity, and its
     * corresponding part of the replication stream, will be propagated to
     * the sub-slaves and to the replication backlog. */
    if (!(c->flags & CLIENT_MASTER)) {
        processInputBuffer(c);//非 master
    } else {
        //本机为 master,除了处理 buffer 里的命令,还要解决主从复制的问题
        size_t prev_offset = c->reploff;
        processInputBuffer(c);
        size_t applied = c->reploff - prev_offset;
        if (applied) {
            replicationFeedSlavesFromMasterStream(server.slaves,
                    c->pending_querybuf, applied);
            sdsrange(c->pending_querybuf,applied,-1);
        }
    }
}

当 fd 可读时,eventloop 会触发 readQueryFromClient 这个回调函数,再调用 processInputBuffer 函数

/* This function is called every time, in the client structure 'c', there is
 * more query buffer to process, because we read more data from the socket
 * or because a client was blocked and later reactivated, so there could be
 * pending query buffer, already representing a full command, to process. */
void processInputBuffer(client *c) {
.....

        if (c->reqtype == PROTO_REQ_INLINE) {
            if (processInlineBuffer(c) != C_OK) break;
        } else if (c->reqtype == PROTO_REQ_MULTIBULK) {
            if (processMultibulkBuffer(c) != C_OK) break;
        } else {
            serverPanic("Unknown request type");
        }

        /* Multibulk processing could see a <= 0 length. */
        if (c->argc == 0) {
            resetClient(c);
        } else {
            /* Only reset the client when the command was executed. */
            //终于开始执行 command 了
            if (processCommand(c) == C_OK) {
                if (c->flags & CLIENT_MASTER && !(c->flags & CLIENT_MULTI)) {
                    /* Update the applied replication offset of our master. */
                    c->reploff = c->read_reploff - sdslen(c->querybuf);
                }

                /* Don't reset the client structure for clients blocked in a
                 * module blocking command, so that the reply callback will
                 * still be able to access the client argv and argc field.
                 * The client will be reset in unblockClientFromModule(). */
                if (!(c->flags & CLIENT_BLOCKED) || c->btype != BLOCKED_MODULE)
                    resetClient(c);
            }
            /* freeMemoryIfNeeded may flush slave output buffers. This may
             * result into a slave, that may be the active client, to be
             * freed. */
            if (server.current_client == NULL) break;
        }
    }
    server.current_client = NULL;
}

调用processCommand 方法,顾名思义,里面会对 client 发来的指令做处理

其实现位于server.c 里

/* If this function gets called we already read a whole
 * command, arguments are in the client argv/argc fields.
 * processCommand() execute the command or prepare the
 * server for a bulk read from the client.
 *
 * If C_OK is returned the client is still alive and valid and
 * other operations can be performed by the caller. Otherwise
 * if C_ERR is returned the client was destroyed (i.e. after QUIT). */
int processCommand(client *c) {
......
    /* Now lookup the command and check ASAP about trivial error conditions
     * such as wrong arity, bad command name and so forth. */
    // 从 command dict 里查找对应的 command 实现,
    c->cmd = c->lastcmd = lookupCommand(c->argv[0]->ptr);
    //检查 command 是否存在,以及参数的数量是否正确
    if (!c->cmd) {
        flagTransaction(c);
        addReplyErrorFormat(c,"unknown command '%s'",
            (char*)c->argv[0]->ptr);
        return C_OK;
    } else if ((c->cmd->arity > 0 && c->cmd->arity != c->argc) ||
               (c->argc < -c->cmd->arity)) {
        flagTransaction(c);
        addReplyErrorFormat(c,"wrong number of arguments for '%s' command",
            c->cmd->name);
        return C_OK;
    }
.....

    //前面是检查参数和处理各种异常情况
    /* Exec the command */
    //如果处在 multi 命令开启的事务环境中
    if (c->flags & CLIENT_MULTI &&
        c->cmd->proc != execCommand && c->cmd->proc != discardCommand &&
        c->cmd->proc != multiCommand && c->cmd->proc != watchCommand)
    {
        //把命令放到 queue 里
        queueMultiCommand(c);
        addReply(c,shared.queued);
    } else {
        //执行非事务,普通命令,实现位于本文件的2200多行
        call(c,CMD_CALL_FULL);
        c->woff = server.master_repl_offset;
        if (listLength(server.ready_keys))
            handleClientsBlockedOnKeys();
    }
    return C_OK;
}

这个方法有两个关键点:

1. 调用 lookupCommand 方法查找 client 提交的 command 对应的实现(redis server 启动的时候会初始化一个 dict,里面存放了 command 名称到实现函数的映射关系,去这个 dict 里查就好了)

2. 执行函数,我们先不关注事务,只看最简单的普通命令,那么会调用call 方法

其实现位于 server.c 里

void call(client *c, int flags) {
......
    /* Call the command. */
    dirty = server.dirty;
    start = ustime();
    c->cmd->proc(c);//执行命令
    duration = ustime()-start;//计算命令执行时间
    dirty = server.dirty-dirty;
    if (dirty < 0) dirty = 0;
....
}

主要是用 cmd 的 proc 属性,一个函数指针来完成实际操作

至于 cmd 和它的 proc 属性,是在上一步的 lookupCommand 方法里被设置的。

例如最简单的 get 方法,就对应于getCommand 这个方法:

    {"get",getCommand,2,"rF",0,NULL,1,1,1,0,0},

其具体实现位于t_string.c 里,细节暂时就不跟进了。

现在我们就大致上能理解client 发送的 command 的流转过程了。

 

posted @ 2018-07-28 21:30  qeDVuHG  阅读(1033)  评论(0编辑  收藏  举报