两篇关于最大似然估计和贝叶斯估计的入门文章
参数估计:最大似然、贝叶斯与最大后验(原文链接)
中国有句话叫“马后炮”,大体上用在中国象棋和讽刺人两个地方,第一个很厉害,使对方将帅不得动弹,但这个跟我们今天说的基本没关系;第二个用途源于第一个,说事情都发生了再采取措施,太迟了。但不可否认,我们的认知就是从错误中不断进步,虽然已经做错的不可能变得正确,但“来者尤可追”,我们可以根据既往的经验(数据),来判断以后应该采取什么样的措施。这其实就是有监督机器学习的过程。其中涉及的一个问题就是模型中参数的估计。
为什么会有参数估计呢?这要源于我们对所研究问题的简化和假设。我们在看待一个问题的时候,经常会使用一些我们所熟知的经典的模型去简化问题,就像我们看一个房子,我们想到是不是可以把它看成是方形一样。如果我们已经知道这个房子是三间平房,那么大体上我们就可以用长方体去描述它的轮廓。这个画房子的问题就从无数的可能性中,基于方圆多少里大家都住平房的经验,我们可以假设它是长方体,剩下的问题就是确定长宽高这三个参数了,问题被简化了。再如学生考试的成绩,根据既往的经验,我们可以假设学生的成绩是正态分布的,那么剩下的问题就是确定分布的期望和方差。所以,之所以要估计参数,是因为我们希望用较少的参数去描述数据的总体分布。而可以这样做的前提是我们对总体分布的形式是知晓的,只需要估计其中参数的值;否则我们要借助非参数的方法了。
参数估计的方法有多种,这里我们分析三种基于概率的方法,分别是最大似然估计(Maximum Likelihood)、贝叶斯估计(Bayes)和最大后验估计(Maximum a posteriori)。我们假设我们观察的变量是,观察的变量取值(样本)为,要估计的参数是,的分布函数是(我们用条件概率来显式地说明这个分布是依赖于取值的)。实际中,和都可以是几个变量的向量,这里我们不妨认为它们都是标量。
- 最大似然估计 Maximum Likelihood (ML)
“似然”的意思就是“事情(即观察数据)发生的可能性”,最大似然估计就是要找到的一个估计值,使“事情发生的可能性”最大,也就是使最大。一般来说,我们认为多次取样得到的是独立同分布的(iid),这样
由于一般都比较小,且N一般都比较大,因此连乘容易造成浮点运算下溢,所以通常我们都去最大化对应的对数形式
具体求解释时,可对右式对求导数,然后令为0,求出值即为。
最大似然估计属于点估计,只能得到待估计参数的一个值。(1) 但是在有的时候我们不仅仅希望知道,我们还希望知道取其它值得概率,即我们希望知道整个在获得观察数据后的分布情况. (2) 最大似然估计仅仅根据(有限的)观察数据对总体分布进行估计,在数据量不大的情况下,可能不准确。例如我们要估计人的平均体重,但是抽样的人都是小孩,这样我们得到的平均体重就不能反映总体的分布,而我们应该把“小孩之占总人口20%”的先验考虑进去。这时我们可以用贝叶斯方法。
- 贝叶斯估计 Bayes
使用Bayes公式,我们可以把我们关于的先验知识以及在观察数据结合起来,用以确定的后验概率:
其中是累积因子,以保证和为1。要使用Bayes方法,我们需有关于的先验知识,即不同取值的概率。比如表示下雨,表示不下雨,根据以往的经验我们大体上有、,在这种知识不足的时候,可以假设是均匀分布的,即取各值的概率相等。
在某个确定的取值下,事件x的概率就是,这是关于的函数,比如一元正态分布。与上一节中的一样,我们认为各次取样是独立的,可以分开来写,这样我们就可以得到的一个表达式,不同的对应不同的值。
根据获得的,我们边可以取使其最大化的那个取值,记为。可能有人已经看出问题来了:我们做了很多额外功,为了求得一个,我们把取其它值的情况也考虑了。当然在有的时候分布是有用的,但是有的时候我们取并不需要知道,我们只要那个。最大后验估计这个时候就上场了。
- 最大后验估计 MAP
最大后验估计运用了贝叶斯估计的思想,但是它并不去求解,而是直接获得。从贝叶斯估计的公式可以看出,是与无关的,要求得使最的的,等价于求解下面的式子:
与最大似然估计中一样,我们通常最大化对应的对数形式:
这样,我们便无需去计算,也不需要求得具体的部分,便可以得到想要的。
总结一下:三种方法各有千秋,使用于不同的场合。当对先验概率的估计没有信心,可以使用最大似然估计(当然也可以使用其它两种)。贝叶斯估计得到了后验概率的分布,最大似然估计适用于只需要知道使后验概率最大的那个。
另外一方面,我们可以感觉到,最大似然估计和Bayes/MAP有很大的不同,原因在于后两种估计方法利用了先验知识,如果利用恰当,可以得到更好的结果。其实这也是两大派别(Frequentists and Bayesians)的一个区别。
文本语言模型的参数估计-最大似然估计、MAP及贝叶斯估计(原文链接)
以PLSA和LDA为代表的文本语言模型是当今统计自然语言处理研究的热点问题。这类语言模型一般都是对文本的生成过程提出自己的概率图模型,然后利用观察到的语料数据对模型参数做估计。有了语言模型和相应的模型参数,我们可以有很多重要的应用,比如文本特征降维、文本主题分析等等。本文主要介绍文本分析的三类参数估计方法-最大似然估计MLE、最大后验概率估计MAP及贝叶斯估计。
1、最大似然估计MLE
首先回顾一下贝叶斯公式
这个公式也称为逆概率公式,可以将后验概率转化为基于似然函数和先验概率的计算表达式,即
最大似然估计就是要用似然函数取到最大值时的参数值作为估计值,似然函数可以写做
由于有连乘运算,通常对似然函数取对数计算简便,即对数似然函数。最大似然估计问题可以写成
这是一个关于的函数,求解这个优化问题通常对求导,得到导数为0的极值点。该函数取得最大值是对应的的取值就是我们估计的模型参数。
以扔硬币的伯努利实验为例子,N次实验的结果服从二项分布,参数为P,即每次实验事件发生的概率,不妨设为是得到正面的概率。为了估计P,采用最大似然估计,似然函数可以写作
得到参数p的最大似然估计值为
可以看出二项分布中每次事件发的概率p就等于做N次独立重复随机试验中事件发生的概率。
如果我们做20次实验,出现正面12次,反面8次
那么根据最大似然估计得到参数值p为12/20 = 0.6。
2、最大后验估计MAP
最大后验估计与最大似然估计相似,不同点在于估计的函数中允许加入一个先验,也就是说此时不是要求似然函数最大,而是要求由贝叶斯公式计算出的整个后验概率最大,即
注意这里P(X)与参数无关,因此等价于要使分子最大。与最大似然估计相比,现在需要多加上一个先验分布概率的对数。在实际应用中,这个先验可以用来描述人们已经知道或者接受的普遍规律。例如在扔硬币的试验中,每次抛出正面发生的概率应该服从一个概率分布,这个概率在0.5处取得最大值,这个分布就是先验分布。先验分布的参数我们称为超参数(hyperparameter)即
同样的道理,当上述后验概率取得最大值时,我们就得到根据MAP估计出的参数值。给定观测到的样本数据,一个新的值发生的概率是
下面我们仍然以扔硬币的例子来说明,我们期望先验概率分布在0.5处取得最大值,我们可以选用Beta分布即
其中Beta函数展开是
当x为正整数时
Beta分布的随机变量范围是[0,1],所以可以生成normalised probability values。下图给出了不同参数情况下的Beta分布的概率密度函数
我们取,这样先验分布在0.5处取得最大值,现在我们来求解MAP估计函数的极值点,同样对p求导数我们有
得到参数p的的最大后验估计值为
和最大似然估计的结果对比可以发现结果中多了这样的pseudo-counts,这就是先验在起作用。并且超参数越大,为了改变先验分布传递的belief所需要的观察值就越多,此时对应的Beta函数越聚集,紧缩在其最大值两侧。
如果我们做20次实验,出现正面12次,反面8次,那么
那么根据MAP估计出来的参数p为16/28 = 0.571,小于最大似然估计得到的值0.6,这也显示了“硬币一般是两面均匀的”这一先验对参数估计的影响。
3 贝叶斯估计
贝叶斯估计是在MAP上做进一步拓展,此时不直接估计参数的值,而是允许参数服从一定概率分布。回顾一下贝叶斯公式
现在不是要求后验概率最大,这样就需要求,即观察到的evidence的概率,由全概率公式展开可得
当新的数据被观察到时,后验概率可以自动随之调整。但是通常这个全概率的求法是贝叶斯估计比较有技巧性的地方。
那么如何用贝叶斯估计来做预测呢?如果我们想求一个新值的概率,可以由
来计算。注意此时第二项因子在上的积分不再等于1,这就是和MLE及MAP很大的不同点。
我们仍然以扔硬币的伯努利实验为例来说明。和MAP中一样,我们假设先验分布为Beta分布,但是构造贝叶斯估计时,不是要求用后验最大时的参数来近似作为参数值,而是求满足Beta分布的参数p的期望,有
注意这里用到了公式
当T为二维的情形可以对Beta分布来应用;T为多维的情形可以对狄利克雷分布应用
根据结果可以知道,根据贝叶斯估计,参数p服从一个新的Beta分布。回忆一下,我们为p选取的先验分布是Beta分布,然后以p为参数的二项分布用贝叶斯估计得到的后验概率仍然服从Beta分布,由此我们说二项分布和Beta分布是共轭分布。在概率语言模型中,通常选取共轭分布作为先验,可以带来计算上的方便性。最典型的就是LDA中每个文档中词的Topic分布服从Multinomial分布,其先验选取共轭分布即Dirichlet分布;每个Topic下词的分布服从Multinomial分布,其先验也同样选取共轭分布即Dirichlet分布。
根据Beta分布的期望和方差计算公式,我们有
可以看出此时估计的p的期望和MLE ,MAP中得到的估计值都不同,此时如果仍然是做20次实验,12次正面,8次反面,那么我们根据贝叶斯估计得到的p满足参数为12+5和8+5的Beta分布,其均值和方差分别是17/30=0.567, 17*13/(31*30^2)=0.0079。可以看到此时求出的p的期望比MLE和MAP得到的估计值都小,更加接近0.5。
综上所述我们可以可视化MLE,MAP和贝叶斯估计对参数的估计结果如下
个人理解是,从MLE到MAP再到贝叶斯估计,对参数的表示越来越精确,得到的参数估计结果也越来越接近0.5这个先验概率,越来越能够反映基于样本的真实参数情况。
参考文献
Gregor Heinrich, Parameter estimation for test analysis, technical report
Wikipedia Beta分布词条 , http://en.wikipedia.org/wiki/Beta_distribution