OpenCV中Camshitf算法学习(补充)

结合OpenCV中Camshitf算法学习,做一些简单的补充,包括:

  • 实现全自动跟随的一种方法

参考opencv中的相关demo,可以截取目标物体的图片,由此预先计算出其色彩投影图,用于实际的目标跟随。

1 Mat hsv,mask,hue,hist;
2 cvtColor( cut_image, hsv, CV_BGR2HSV );//cut_image为提前截取的目标图片
3 inRange( hsv, Scalar( MIN( _hmin, _hmax ), MIN( _smin, _smax ), MIN( _vmin, _vmax ) ),Scalar( MAX( _hmin, _hmax ), MAX( _smin, _smax ), MAX( _vmin, _vmax ) ),mask );
4 
5 int ch[] = {0, 0};
6 hue.create(hsv.size(), hsv.depth());
7 mixChannels(&hsv, 1, &hue, 1, ch, 1);
8 calcHist( &hue,1,0,mask,hist,1,&hsize,&phranges);
9 normalize(hist, hist, 0, 255, CV_MINMAX);

上述代码计算出了目标物体的色彩投影图 hist,之后利用hist便可以实现目标物体的全自动跟随了

 1 cvtColor( sceneImg,hsv,CV_BGR2HSV);
 2 inRange( hsv, Scalar( MIN( _hmin, _hmax ), MIN( _smin, _smax ), MIN( _vmin, _vmax ) ),Scalar( MAX( _hmin, _hmax ), MAX( _smin, _smax ), MAX( _vmin, _vmax ) ),mask );
 3 
 4 Mat backproj;
 5 hue.create(hsv.size(), hsv.depth());
 6 mixChannels(&hsv, 1, &hue, 1, ch, 1);
 7 calcBackProject( &hue, 1, 0, hist, backproj, &phranges );
 8 backproj &= mask;
 9 trackWindow = Rect( 0, 0, 640, 480 );
10 trackBox =  CamShift(backproj, trackWindow,
11 TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));
  • 缺陷

  camshift能有效解决目标变形和遮挡的问题,对系统资源要求不高,时间复杂度低,在简单背景下能够取得良好的跟踪效果。但当背景较为复杂,或者有许 多与目标颜色相似像素干扰的情况下,会导致跟踪失败。因为它单纯的考虑颜色直方图,忽略了目标的空间分布特性,所以这种情况下需加入对跟踪目标的预测算法。
  由于这个缺点,因此可以利用surf算法进行特征点匹配,从而克服camshif因复杂环境造成的影响,不过surf算法的一个缺陷是不能解决目标物体的变形。由此,最好的解决方法便是 camshift+surf 。或者说利用PCL。

2013.10.25

posted @ 2013-10-25 18:47  StevenMeng  阅读(1022)  评论(0编辑  收藏  举报