[动态规划]保存子问题的结果

问题描述:

给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1]。不能使用除法

这里如果直接每次的计算乘积的话,时间复杂度为O(n2),所以可以使用动态规划的思想,保存中间结果,这样的时间复杂度就能够降低到O(n)。

vector<int> multiply(const vector<int>& A) 
{
	
	vector<int> res;
	int left[100];
	int right[100];
	int size = A.size();
	
	left[0] = 1;
	for(int i = 1; i < size; i++)
	{
		left[i] = left[i - 1] * A[i- 1];
	}
	
	right[size - 1] = 1;
	for(int j = size - 1 - 1; j >= 0; --j)
	{
		right[j] = right[j + 1] * A[j + 1];
	}
	
	for(int k = 0; k < size; k++)
	{
		res.push_back(left[k] * right[k]);
	}
	
	return res;
}

  

posted @ 2015-09-16 16:58  stemon  阅读(467)  评论(0编辑  收藏  举报