PaddleOCR系列(二)--hubserving & pdserving & hub install

一、各种部署方式特点及注意事项

简称

  • hubserving=PaddleHub Serving

  • pdserving=PaddleHub Serving

  • hub install =指通过paddlehub库直接安装部署服务

部署方式

  • 都是基于Docker进行部署,Docker环境搭建参照该博文

  • 如果你对Docker比较熟悉,可以直接拉取该项目,对应的方式及版本都做了归类

    git pull https://github.com/steinvenic/PaddleOCR-Docker.git
    如果被墙可以使用镜像站git pull https://github.com.cnpmjs.org/steinvenic/PaddleOCR-Docker.git

各服务特点

  • pdserving更适合企业级部署,性能更高,摘取官方的介绍:

支持客户端和服务端之间高并发和高效通信

支持 工业级的服务能力 例如模型管理,在线加载,在线A/B测试等

支持 多种编程语言 开发客户端,例如C++, Python和Java

  • hubserving可以理解为源码方式安装某个服务,配置型强

  • hub install 其实和hubserving方式一样,都使用paddlehub库进行部署的,其首次进行识别的的时候,会自动下载模型文件,真正一条命令就可以运行起来一个服务,部署起来超简单。
    不足之处在于我现在还没找到对于相关模块的配置。只有paddlehub自己的一些启动参数可配置。如果你的显卡比较好,又想快点部署,优先考虑采用本方式。低端显卡要是使用此种方式,会导致显存迅速拉满,然后不可用,我现在也没找到解决办法。
    相同配置的硬件,使用该种方式,CPU版相较于hubserving明显速度变慢很多,估计是某些参数没设置好,请酌情使用,GPU版本未测试
    除了本文的OCR,还有很多有趣的服务通过此种方式可快速搭建,详见

注意事项

  • 相同价格的硬件,识别速度上还是GPU速度更快,优先选择GPU
  • 部署方式上优先选择pdserving方式
  • 如果你没有显卡,只能用CPU的话,一定要确认你的CPU要支持AVX指令集,验证方法:lscpu | grep avx
    没有AVX指令的话,部署起来比较困难,而且识别速度应该会很慢。
    如果你真想部署的话,要安装对应的noavx版本的paddlepaddlewhl在这并且只能使用Python3.8,这个我暂时没时间验证是否能安装成功。等后面有时间了再研究一下...
  • 当你使用wget获取资源的时候,如果发现速度很慢,只有几十KB,你可以尝试一下Ctrl+C取消后再重新获取,这个问题是什么导致的我也不清楚
  • 如果你使用的是阿里云或者其他(非百度)的云平台获取资源的时候,速度奇慢,我想是被百度限制了,这时候你可能需要在本地下载好再传到你机器上,当然你也可以使用代理的方式
  • 当你真想部署成一个可靠的服务时,GPU显存我感觉最少要16 GB
  • 当你在阿里云上使用pdserving方式部署,有可能遇到显存被瞬间填满,机器卡死的情况。我本以为是PaddleServing造成的现存泄露,我也一直在纠结这个问题。但在百度的aistudio上,同样16G显存,aistudio是正常的

二、pdserving方式部署

GPU

Dockerfile:

FROM paddlepaddle/paddle:2.1.0-gpu-cuda10.2-cudnn7
LABEL maintainer="steinven@qq.com"
LABEL version="1.0"
LABEL description="PaddleOCR pdserving GPU version"

#github网速太慢或被墙,现用的cnpmjs加速,也可以更换为码云
ENV REPO_LINK=https://github.com.cnpmjs.org/PaddlePaddle/PaddleOCR.git

#模型数据
ENV	orc_detect_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
ENV	orc_recognition_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar

#whl包,开发测试阶段,未上传到pypi
ENV paddle_serving_client_test=https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp37-none-any.whl

#安装所需的库文件
RUN pip3.7 install --upgrade pip paddle-serving-server-gpu==0.6.1.post101 paddle-serving-app==0.6.1 -i https://mirror.baidu.com/pypi/simple \
	&& git clone $REPO_LINK /PaddleOCR \
	&& pip3.7 install -r /PaddleOCR/requirements.txt -i https://mirror.baidu.com/pypi/simple


#下载模型数据并解压
WORKDIR /PaddleOCR/deploy/pdserving
ADD $orc_detect_model .
ADD $orc_recognition_model .
ADD $paddle_serving_client_test .
RUN for f in *.tar; do tar xf "$f"; done;rm -fr *.tar \
	&& pip3.7 install paddle_serving_client-0.0.0-cp37-none-any.whl \
	&& python3.7 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_det_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_det_mobile_2.0_serving/ \
                                         --serving_client ./ppocr_det_mobile_2.0_client/ \
    && python3.7 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_rec_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_rec_mobile_2.0_serving/  \
                                         --serving_client ./ppocr_rec_mobile_2.0_client/ \
	&& rm -fr *.tar


EXPOSE 9998

ENTRYPOINT ["/bin/bash","-c","python3.7 web_service.py"]

构建镜像

docker build -t pdserving_gpu:v1 .

运行

docker run -itd --network=host --gpus all --name pdserving_gpu pdserving_gpu:v1

修改配置

查看运行日志发现没有错误后,低端显卡的话,别先进行测试。我们需要修改一下配置文件。
默认的配置对显卡要求较高,需要修改一下QPS,默认的两个并发参数分别为8、4,现在拿我的GeForce 750 2GB显存,我需要把它改成2、1

  • 进入容器:docker exec -it pdserving_gpu /bin/bash
  • 打开配置文件vim /PaddleOCR/deploy/pdserving/config.yml,找到下图对应的两个参数,进行修改
  • 重启docker容器:docker restart pdserving_gpu
  • 测试:
# coding:utf-8
import base64
import json
import os

import requests


def cv2_to_base64(image):
    return base64.b64encode(image).decode('utf8')


url = "http://172.16.71.33:9998/ocr/prediction"
test_img_dir = r"C:\Users\eric\Desktop\pre_ocr_images"
for idx, img_file in enumerate(os.listdir(test_img_dir)):
    with open(os.path.join(test_img_dir, img_file), 'rb') as file:
        image_data1 = file.read()

    image = cv2_to_base64(image_data1)

    for i in range(1):
        data = {"key": ["image"], "value": [image]}
        r = requests.post(url=url, data=json.dumps(data))
        print(r.json())

print("==> total number of test imgs: ", len(os.listdir(test_img_dir)))

CPU

Dockerfile:

FROM paddlepaddle/paddle:2.1.0
LABEL maintainer="steinven@qq.com"
LABEL version="1.0"
LABEL description="PaddleOCR pdserving CPU version"

#github网速太慢或被墙,现用的cnpmjs加速,也可以更换为码云
ENV REPO_LINK=https://github.com.cnpmjs.org/PaddlePaddle/PaddleOCR.git

#模型数据
ENV	orc_detect_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
ENV	orc_recognition_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar

#whl包,开发测试阶段,未上传到pypi
ENV paddle_serving_client_test=https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp37-none-any.whl

#安装所需的库文件
RUN pip3.7 install --upgrade pip paddle-serving-server==0.6.1 paddle-serving-app==0.6.1 -i https://mirror.baidu.com/pypi/simple \
	&& git clone $REPO_LINK /PaddleOCR \
	&& pip3.7 install -r /PaddleOCR/requirements.txt -i https://mirror.baidu.com/pypi/simple


#下载模型数据并解压
WORKDIR /PaddleOCR/deploy/pdserving
ADD $orc_detect_model .
ADD $orc_recognition_model .
ADD $paddle_serving_client_test .
RUN for f in *.tar; do tar xf "$f"; done;rm -fr *.tar \
	&& pip3.7 install paddle_serving_client-0.0.0-cp37-none-any.whl \
	&& python3.7 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_det_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_det_mobile_2.0_serving/ \
                                         --serving_client ./ppocr_det_mobile_2.0_client/ \
    && python3.7 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_rec_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_rec_mobile_2.0_serving/  \
                                         --serving_client ./ppocr_rec_mobile_2.0_client/ \
	&& rm -fr *.tar


EXPOSE 9998

ENTRYPOINT ["/bin/bash","-c","python3.7 web_service.py"]

构建镜像

docker build -t pdserving_cpu:v1 .

运行

docker run -itd --network=host --name pdserving_cpu pdserving_cpu:v1

后续测试请参见上方的GPU版本,不再赘述

三、hubserving方式部署

GPU版

Dockerfile

FROM paddlepaddle/paddle:2.1.0-gpu-cuda10.2-cudnn7
LABEL maintainer="steinven@qq.com"
LABEL version="1.0"
LABEL description="PaddleOCR hubserving GPU version"

#github网速太慢或被墙,现用的cnpmjs加速,也可以更换为码云
ENV REPO_LINK=https://github.com.cnpmjs.org/PaddlePaddle/PaddleOCR.git

#模型数据,现用的ch_ppocr_mobile_v2.0_xx,为中英文超轻量OCR模型,因为源码参数中配置的就为该模型,
#所以不用修改源码。如果切换为服务端模型,记得修改deploy/hubserving/ocr_system/params.py下对应的模型位置
ENV	orc_detect_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
ENV	orc_direction_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
ENV	orc_recognition_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar

#安装所需的库文件
RUN pip3.7 install --upgrade pip paddlehub -i https://mirror.baidu.com/pypi/simple \
	&& git clone $REPO_LINK /PaddleOCR \
	&& pip3.7 install -r /PaddleOCR/requirements.txt -i https://mirror.baidu.com/pypi/simple \
	&& mkdir -p /PaddleOCR/inference	

#下载模型数据并解压
WORKDIR /PaddleOCR/inference/
ADD $orc_detect_model .
ADD $orc_direction_model .
ADD $orc_recognition_model .
RUN for f in *.tar; do tar xf "$f"; done;rm -fr *.tar
WORKDIR /PaddleOCR
EXPOSE 8868

ENTRYPOINT ["/bin/bash","-c","export CUDA_VISIBLE_DEVICES=0 && hub install deploy/hubserving/ocr_system/ && hub serving start -c deploy/hubserving/ocr_system/config.json "]

构建docker镜像

docker build -t hubserving_gpu:v1 .

运行

docker run -itd --network=host --gpus all --name hubserving_gpu hubserving_gpu:v1

检查运行状态,查看是否有错误,查看端口号

docker logs -f hubserving_gpu

客户端测试:

# coding:utf-8
import base64
import json
import os
import traceback

import cv2
import requests

test_img_dir = './imgs/1'


def cv2_to_base64(image):
    data = cv2.imencode('.jpg', image)[1]
    return base64.b64encode(data.tostring()).decode('utf8')


for idx, img_file in enumerate(os.listdir(test_img_dir)):
    try:
        data = {'images': [cv2_to_base64(cv2.imread(os.path.join(test_img_dir, img_file)))]}
        headers = {"Content-type": "application/json"}
        url = "http://172.16.71.33:8868/predict/ocr_system"
        r = requests.post(url=url, headers=headers, data=json.dumps(data))
        print(r.text)
        print(r.json()["results"])
    except:
        traceback.print_exc()
        continue

CPU版

Dockerfile

FROM paddlepaddle/paddle:2.1.0
LABEL maintainer="steinven@qq.com"
LABEL version="1.0"
LABEL description="PaddleOCR hubserving CPU version"

#github网速太慢或被墙,现用的cnpmjs加速,也可以更换为码云
ENV REPO_LINK=https://github.com.cnpmjs.org/PaddlePaddle/PaddleOCR.git

#模型数据,现用的ch_ppocr_mobile_v2.0_xx,为中英文超轻量OCR模型,因为源码参数中配置的就为该模型,
#所以不用修改源码。如果切换为服务端模型,记得修改deploy/hubserving/ocr_system/params.py下对应的模型位置
ENV	orc_detect_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
ENV	orc_direction_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
ENV	orc_recognition_model=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar

#安装所需的库文件
RUN pip3.7 install --upgrade pip paddlehub -i https://mirror.baidu.com/pypi/simple \
	&& git clone $REPO_LINK /PaddleOCR \
	&& pip3.7 install -r /PaddleOCR/requirements.txt -i https://mirror.baidu.com/pypi/simple \
	&& mkdir -p /PaddleOCR/inference	

#下载模型数据并解压
WORKDIR /PaddleOCR/inference/
ADD $orc_detect_model .
ADD $orc_direction_model .
ADD $orc_recognition_model .
RUN for f in *.tar; do tar xf "$f"; done;rm -fr *.tar
WORKDIR /PaddleOCR
EXPOSE 8868

ENTRYPOINT ["/bin/bash","-c","hub install deploy/hubserving/ocr_system/ && hub serving start -m ocr_system -p 8868"]

构建镜像

docker build -t hubserving_cpu:v1 .

运行

docker run -itd --network=host --name hubserving_cpu hubserving_cpu:v1
后续测试请参见上方的GPU版本,不再赘述

四、hub install方式部署

GPU

Dockerfile

FROM paddlepaddle/paddle:2.1.0-gpu-cuda10.2-cudnn7
LABEL maintainer="steinven@qq.com"
LABEL version="1.0"
LABEL description="hub install GPU version"

ENV CUDA_VISIBLE_DEVICES=0

#安装所需的库文件
RUN pip3.7 install --upgrade pip paddlehub shapely pyclipper -i https://mirror.baidu.com/pypi/simple

ENTRYPOINT ["/bin/bash","-c","hub serving start -m chinese_ocr_db_crnn_server"]

构建镜像

docker build -t hub_install_gpu:v1 .

运行

docker run -itd --network=host --gpus all --name hub_install_gpu hub_install_gpu:v1

测试

# coding:utf-8
import base64
import json
import os

import cv2
import requests


def cv2_to_base64(image):
    data = cv2.imencode('.jpg', image)[1]
    return base64.b64encode(data.tostring()).decode('utf8')


url = "http://172.16.71.33:8866/predict/chinese_ocr_db_crnn_server"
test_img_dir = './images1'
for idx, img_file in enumerate(os.listdir(test_img_dir)):
    data = {'images': [cv2_to_base64(cv2.imread(os.path.join(test_img_dir, img_file)))]}
    headers = {"Content-type": "application/json"}
    r = requests.post(url=url, headers=headers, data=json.dumps(data))
    print(r.json()["results"])

CPU

Dockerfile

FROM paddlepaddle/paddle:2.1.0
LABEL maintainer="steinven@qq.com"
LABEL version="1.0"
LABEL description="hub install CPU version"


#安装所需的库文件
RUN pip3.7 install --upgrade pip paddlehub shapely pyclipper -i https://mirror.baidu.com/pypi/simple

ENTRYPOINT ["/bin/bash","-c","hub serving start -m chinese_ocr_db_crnn_server"]

构建镜像

docker build -t hub_install_cpu:v1 .

运行

docker run -itd --network=host --name hub_install_cpu hub_install_cpu:v1
后续测试请参见上方的GPU版本,不再赘述

posted @ 2021-06-26 17:30  秒年度  阅读(5091)  评论(3编辑  收藏  举报