勾股
一, 直角三角形a^2+b^2=c^2的a值奇偶数列法则:
定理1. 如a^2+b^2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;
(一) 直角三角形a^2+b^2=c^2奇数列a法则:
若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:
a=2n+1
{ b= n^2+(n+1)^2-1
c= n^2+(n+1)^2
证:由勾股弦定理,若abc为直角三角形三边整数时必有a^2+b^2=c^2关系成立,现将奇数列a法则条件代入勾股弦定理得到下式:
(2n+1)^2+(n^2+(n+1)^2-1)^2=(n^2+(n+1)^2)^2
化简后得到:
4n^4+8n^3+8n^2+4n+1=4n^4+8n^3+8n^2+4n+1
即等式关系成立;
(二) 直角三角形a^2+b^2=c^2的偶数列a法则:
若a表为2n型偶数(n=2、3、4…), 则a为偶数列平方整数解的关系是:
a= 2n
{ b= n^2 -1
c= n^2+1
证:由勾股弦定理,若abc为直角三角形三边整数时必有a^2+b^2=c^2关系成立,现将偶数列a法则条件代入勾股弦定理得到下式:
(2n)^2+(n^2-1)^2=(n^2+1)^2
化简后得到:
n^4+2n^2+1= n^4+2n^2+1
即等式关系成立;
(这里需要说明,当取n=1时,有b= n2 –1=1-1=0,此时失去三角形意义,故只能取n=2、3、4…)