博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

在介绍完了DownloadAction之后,还剩下FilesystemVerifierAction和PostinstallRunnerAction,下面开始对其进行分析。

FilesystemVerifierAction

在数据下载完成后,在DownloadAction中会切换到FilesystemVerifierAction

1 void DownloadAction::TransferComplete(HttpFetcher* fetcher, bool successful) {
2   if (writer_) {
3    ........
4   // Write the path to the output pipe if we're successful.
5   if (code == ErrorCode::kSuccess && HasOutputPipe())
6     SetOutputObject(install_plan_);
7   processor_->ActionComplete(this, code);
8 }

 最后的ActionComplete会开始执行FilesystemVerifierAction。

src/system/update_engine/payload_consumer/filesystem_verifer_action.cc

 1 void FilesystemVerifierAction::PerformAction() {
 2   // Will tell the ActionProcessor we've failed if we return.
 3   ScopedActionCompleter abort_action_completer(processor_, this);
 4 
 5   if (!HasInputObject()) {
 6     LOG(ERROR) << "FilesystemVerifierAction missing input object.";
 7     return;
 8   }
 9   install_plan_ = GetInputObject();   //获取上一个Action传过来的install_plan_
10 
11   if (install_plan_.partitions.empty()) {
12     LOG(INFO) << "No partitions to verify.";
13     if (HasOutputPipe())
14       SetOutputObject(install_plan_);
15     abort_action_completer.set_code(ErrorCode::kSuccess);
16     return;
17   }
18 
19   StartPartitionHashing();      //开始计算分区的hash
20   abort_action_completer.set_should_complete(false);
21 }

  接着看StartPartitionHashing

 1 void FilesystemVerifierAction::StartPartitionHashing() {
 2   if (partition_index_ == install_plan_.partitions.size()) {       //判断是否验证到了最后一个分区
 3     Cleanup(ErrorCode::kSuccess);
 4     return;
 5   }
 6   InstallPlan::Partition& partition =
 7       install_plan_.partitions[partition_index_];
 8 
 9   string part_path;         
10   switch (verifier_step_) {                    //默认值是KVerifyTargetHash
11     case VerifierStep::kVerifySourceHash:
12       part_path = partition.source_path;
13       remaining_size_ = partition.source_size;
14       break;
15     case VerifierStep::kVerifyTargetHash:
16       part_path = partition.target_path;         //分区的路径
17       remaining_size_ = partition.target_size;   //大小
18       break;
19   }
20   LOG(INFO) << "Hashing partition " << partition_index_ << " ("
21             << partition.name << ") on device " << part_path;
22   if (part_path.empty())
23     return Cleanup(ErrorCode::kFilesystemVerifierError);
24 
25   brillo::ErrorPtr error;
26   src_stream_ = brillo::FileStream::Open(             //打开对应的分区文件
27       base::FilePath(part_path),
28       brillo::Stream::AccessMode::READ,
29       brillo::FileStream::Disposition::OPEN_EXISTING,
30       &error);
31 
32   if (!src_stream_) {
33     LOG(ERROR) << "Unable to open " << part_path << " for reading";
34     return Cleanup(ErrorCode::kFilesystemVerifierError);
35   }
36 
37   buffer_.resize(kReadFileBufferSize);   //重置缓存区的大小
38   read_done_ = false;                    //未被读取完成
39   hasher_.reset(new HashCalculator());   //设置HashCalculator
40 
41   // Start the first read.
42   ScheduleRead();               //开始读取
43 }

 首先判断是否验证的分区的所有hash,如果验证完成了,调用CleanUp做最后的工作。

CleanUp

 1 void FilesystemVerifierAction::Cleanup(ErrorCode code) {
 2   src_stream_.reset();
 3   // This memory is not used anymore.
 4   buffer_.clear();
 5 
 6   if (cancelled_)
 7     return;
 8   if (code == ErrorCode::kSuccess && HasOutputPipe())
 9     SetOutputObject(install_plan_);
10   processor_->ActionComplete(this, code);
11 }

可以看到主要就是清空缓存区,设置install_plan_,切换到下一个Action。如果没有验证完成,就获取要验证的分区路径和大小,这个大小只是要验证的大小,不一定是分区的真正大小。对于镜像文件而言1G的大小能被安装在2G的分区上。接下来调用ScheduleRead()开始进行验证。

ScheduleRead()

 1 void FilesystemVerifierAction::ScheduleRead() {
 2   size_t bytes_to_read = std::min(static_cast<int64_t>(buffer_.size()), 
 3                                   remaining_size_);  //获取要读取数据的大小
 4   if (!bytes_to_read) {   //读取完成
 5     OnReadDoneCallback(0);
 6     return;
 7   }
 8 
 9   bool read_async_ok = src_stream_->ReadAsync(
10     buffer_.data(),
11     bytes_to_read,
12     base::Bind(&FilesystemVerifierAction::OnReadDoneCallback,
13                base::Unretained(this)),
14     base::Bind(&FilesystemVerifierAction::OnReadErrorCallback,
15                base::Unretained(this)),
16     nullptr);  //开始读取
17 
18   if (!read_async_ok) {
19     LOG(ERROR) << "Unable to schedule an asynchronous read from the stream.";
20     Cleanup(ErrorCode::kError);
21   }
22 }

获取读取数据的真实大小,开始读取数据。

 1 void FilesystemVerifierAction::OnReadDoneCallback(size_t bytes_read) {
 2   if (bytes_read == 0) {        //读取完成
 3     read_done_ = true;
 4   } else {
 5     remaining_size_ -= bytes_read;  
 6     CHECK(!read_done_);                                     
 7     if (!hasher_->Update(buffer_.data(), bytes_read)) {   //计算hash
 8       LOG(ERROR) << "Unable to update the hash.";
 9       Cleanup(ErrorCode::kError);
10       return;
11     }
12   }
13 
14   // We either terminate the current partition or have more data to read.
15   if (cancelled_)
16     return Cleanup(ErrorCode::kError);
17 
18   if (read_done_ || remaining_size_ == 0) {
19     if (remaining_size_ != 0) {
20       LOG(ERROR) << "Failed to read the remaining " << remaining_size_
21                  << " bytes from partition "
22                  << install_plan_.partitions[partition_index_].name;
23       return Cleanup(ErrorCode::kFilesystemVerifierError);
24     }
25     return FinishPartitionHashing();   //计算完成后
26   }
27   ScheduleRead();   //如果没有计算完成,继续计读取计算
28 }

在这个方法中会对读取的数据进行hash计算,每次计算其实都是基于前一次的计算结果来进行的,不然就会有太对的数据加载到内存中,导致内存不足。当计算完成后

 1 void FilesystemVerifierAction::FinishPartitionHashing() {
 2   if (!hasher_->Finalize()) {
 3     LOG(ERROR) << "Unable to finalize the hash.";
 4     return Cleanup(ErrorCode::kError);
 5   }
 6   InstallPlan::Partition& partition =
 7       install_plan_.partitions[partition_index_];
 8   LOG(INFO) << "Hash of " << partition.name << ": "
 9             << Base64Encode(hasher_->raw_hash()); 
10 
11   switch (verifier_step_) {
12     case VerifierStep::kVerifyTargetHash:
13       if (partition.target_hash != hasher_->raw_hash()) {   //对保存的targethash和计算得到的hash进行一个比较
14         LOG(ERROR) << "New '" << partition.name
15                    << "' partition verification failed.";
16         if (partition.source_hash.empty()) {
17           // No need to verify source if it is a full payload.
18           return Cleanup(ErrorCode::kNewRootfsVerificationError);
19         }
20         // If we have not verified source partition yet, now that the target
21         // partition does not match, and it's not a full payload, we need to
22         // switch to kVerifySourceHash step to check if it's because the source
23         // partition does not match either.
24         verifier_step_ = VerifierStep::kVerifySourceHash;  //计算source hash
25       } else {
26         partition_index_++;   //计算下一个分区
27       }
28       break;
29     case VerifierStep::kVerifySourceHash:
30       if (partition.source_hash != hasher_->raw_hash()) {  //保存的source hash和计算得到的也不相同
31         LOG(ERROR) << "Old '" << partition.name
32                    << "' partition verification failed.";
33         LOG(ERROR) << "This is a server-side error due to mismatched delta"
34                    << " update image!";
35         LOG(ERROR) << "The delta I've been given contains a " << partition.name
36                    << " delta update that must be applied over a "
37                    << partition.name << " with a specific checksum, but the "
38                    << partition.name
39                    << " we're starting with doesn't have that checksum! This"
40                       " means that the delta I've been given doesn't match my"
41                       " existing system. The "
42                    << partition.name << " partition I have has hash: "
43                    << Base64Encode(hasher_->raw_hash())
44                    << " but the update expected me to have "
45                    << Base64Encode(partition.source_hash) << " .";
46         LOG(INFO) << "To get the checksum of the " << partition.name
47                   << " partition run this command: dd if="
48                   << partition.source_path
49                   << " bs=1M count=" << partition.source_size
50                   << " iflag=count_bytes 2>/dev/null | openssl dgst -sha256 "
51                      "-binary | openssl base64";
52         LOG(INFO) << "To get the checksum of partitions in a bin file, "
53                   << "run: .../src/scripts/sha256_partitions.sh .../file.bin";
54         return Cleanup(ErrorCode::kDownloadStateInitializationError);
55       }
56       // The action will skip kVerifySourceHash step if target partition hash
57       // matches, if we are in this step, it means target hash does not match,
58       // and now that the source partition hash matches, we should set the error
59       // code to reflect the error in target partition.
60       // We only need to verify the source partition which the target hash does
61       // not match, the rest of the partitions don't matter.
62       return Cleanup(ErrorCode::kNewRootfsVerificationError);
63   }
64   // Start hashing the next partition, if any.
65   hasher_.reset();   //重置hash计算器
66   buffer_.clear();  //清空缓存
67   src_stream_->CloseBlocking(nullptr);
68   StartPartitionHashing(); //接着计算
69 }

 可见当一个分区的hash被计算出来的时候就会根据保存好的进行比较,如果target的hash不一致就会转向比较该分区的source hash,其实比较source hash主要就是为了确定错误的类型,只要target hash不一致,无论source hash是否一致都不会继续下一个分区的计算了。就这样一直到最后一个分区验证完后,执行最后一个Action,PostinstallRunnerAction。

PostinstallRunnerAction

PostinstallRunnerAction执行每个分区更新完后的postinstall script。但是在高通平台的,android8.0上无论是全包还是差分包升级并没有实质性的postinstall script。在PostinstallRunnerAction中仅仅是将target_slot标记为active状态。目前只分析于执行相关的代码。

src/system/update_engine/payload_consumer/postinstall_runner_action.cc

 1 void PostinstallRunnerAction::PerformAction() {
 2   CHECK(HasInputObject());
 3   install_plan_ = GetInputObject();   //获取install_plan_
 4 
 5   if (install_plan_.powerwash_required) {    //是否需要进行数据的擦除
 6     if (hardware_->SchedulePowerwash()) {
 7       powerwash_scheduled_ = true;
 8     } else {
 9       return CompletePostinstall(ErrorCode::kPostinstallPowerwashError);
10     }
11   }
12 
13   // Initialize all the partition weights.
14   partition_weight_.resize(install_plan_.partitions.size());  //初始化每个分区的权重
15   total_weight_ = 0;
16   for (size_t i = 0; i < install_plan_.partitions.size(); ++i) {
17     // TODO(deymo): This code sets the weight to all the postinstall commands,
18     // but we could remember how long they took in the past and use those
19     // values.
20     partition_weight_[i] = install_plan_.partitions[i].run_postinstall;
21     total_weight_ += partition_weight_[i];  //计算总的权重
22   }
23   accumulated_weight_ = 0;
24   ReportProgress(0);                      //更新进度
25 
26   PerformPartitionPostinstall();          //开始真正的流程
27 }

来看PerformPartitionPostinstall()

 1 void PostinstallRunnerAction::PerformPartitionPostinstall() {
 2   if (install_plan_.download_url.empty()) {
 3     LOG(INFO) << "Skipping post-install during rollback";
 4     return CompletePostinstall(ErrorCode::kSuccess);
 5   }
 6 
 7   // Skip all the partitions that don't have a post-install step.
 8   while (current_partition_ < install_plan_.partitions.size() &&
 9          !install_plan_.partitions[current_partition_].run_postinstall) {   //run_postinstall为false
10     VLOG(1) << "Skipping post-install on partition "
11             << install_plan_.partitions[current_partition_].name;
12     current_partition_++;
13   }
14   if (current_partition_ == install_plan_.partitions.size())
15     return CompletePostinstall(ErrorCode::kSuccess);
16   ...................
17   ...................
18   ...................
19 }

在当前分析中run_postinstall为false,会跳过post-install。之后会直接执行CompletePostinstall(ErrorCode::kSuccess)

 1 void PostinstallRunnerAction::CompletePostinstall(ErrorCode error_code) {
 2   // We only attempt to mark the new slot as active if all the postinstall
 3   // steps succeeded.
 4   if (error_code == ErrorCode::kSuccess &&
 5       !boot_control_->SetActiveBootSlot(install_plan_.target_slot)) {   //设置target_slot为active
 6     error_code = ErrorCode::kPostinstallRunnerError;
 7   }
 8 
 9   ScopedActionCompleter completer(processor_, this);
10   completer.set_code(error_code);
11 
12   if (error_code != ErrorCode::kSuccess) {
13     LOG(ERROR) << "Postinstall action failed.";
14 
15     // Undo any changes done to trigger Powerwash.
16     if (powerwash_scheduled_)
17       hardware_->CancelPowerwash();
18 
19     return;
20   }
21 
22   LOG(INFO) << "All post-install commands succeeded";
23   if (HasOutputPipe()) {                      //设置输出的install_plan
24     SetOutputObject(install_plan_);
25   }
26 }

最终将target_slot设置为active在重启之后就会从target_slot开始启动了。

分析到这里就算是对update_engine的核心过程有了个大概的了解,除了对升级的知识点的认识,还体会到了它的架构。不足之处就是还有很多的细节未涉及。