利用有限自动机分析正则表达式

程序编译的第一个阶段是词法分析,即把字节流识别为记号(token)流,提供给下一步的语法分析过程。而识别记号的方法就是正则表达式的分析。本文介绍利用有限自动机分析表达式的方法。


概念

记号
有字母表中的符号组成的有限长度的序列。记号s的长度记为|s|。长度为0的记号称为空记号,记为ε
有限自动机(Finite State Automaton)
为研究某种计算过程而抽象出的计算模型。拥有有限个状态,根据不同的输入每个状态可以迁移到其他的状态。
非确定有限自动机(Nondeterministic Finite Automaton)
简称NFA,由以下元素组成:
1. 有限状态集合S
2. 有限输入符号的字母表Σ
3. 状态转移函数move
4. 开始状态 sSUB{0}
5. 结束状态集合FF ∈ S
自动机初始状态为sSUB{0},逐一读入输入字符串中的每一个字母,根据当前状态、读入的字母,由状态转移函数move控制进入下一个状态。如果输入字符串读入结束时自动机的状态属于结束状态集合F,则说明该自动机接受该字符串,否则为不接受。
确定有限自动机(Deterministic Finite Automaton)
简称DFA,是NFA的一种特例,有以下两条限制:
1. 对于空输入ε,状态不发生迁移;
2. 某个状态对于每一种输入最多只有一种状态转移。

将正则表达式转换为NFA(Thompson构造法)

算法

算法1 将正则表达式转换为NFA(Thompson构造法)

输入 字母表Σ上的正则表达式r

输出 能够接受L(r)的NFA N

方法 首先将构成r的各个元素分解,对于每一个元素,按照下述规则1规则2生成NFA。 注意:如果r中记号a出现了多次,那么对于a的每次出现都需要生成一个单独的NFA。

之后依照正规表达式r的文法规则,将生成的NFA按照下述规则3组合在一起。

规则1 对于空记号ε,生成下面的NFA。

fig01.png

规则2 对于Σ的字母表中的元素a,生成下面的NFA。

fig02.png

规则3 令正规表达式st的NFA分别为N(s)N(t)

a) 对于s|t,按照以下的方式生成NFA N(s|t)

fig03.png

b) 对于st,按照以下的方式生成NFA N(st)

fig04.png

c) 对于s*,按照以下的方式生成NFA N(s*)

fig05.png

d) 对于(s),使用s本身的NFA N(s)

性质

算法1生成的NFA能够正确地识别正则表达式,并且具有如下的性质:

  1. N(r)的状态数最多为r中出现的记号和运算符的个数的2倍。
  2. N(r)的开始状态和结束状态有且只有一个。
  3. N(r)的各个状态对于Σ中的一个符号,或者拥有一个状态迁移,或者拥有最多两个ε迁移。

示例

利用算法1,根据正则表达式 r=(a|b)*abb 可以生成以下的NFA。

fig06.png

将NFA转化为DFA

算法

使用以下的算法可以将NFA转换成等价的DFA。

算法2 将NFA转化为DFA

输入 NFA N

输出 能够接受与N相同语言的DFA D

方法 本算法生成D对应的状态迁移表Dtran。DFA的各个状态为NFA的状态集合,对于每一个输入符号,D模拟N中可能的状态迁移。

定义以下的操作。

操作 说明
ε-closure(s) 从NFA的状态s出发,仅通过ε迁移能够到达的NFA的状态集合
ε-closure(T) T中包含的某个NFA的状态s出发,仅通过ε迁移能够到达的NFA的状态集合
move(T, a) T中包含的某个NFA的状态s出发,通过输入符号a迁移能够到达的NFA的状态集合
令 Dstates 中仅包含ε-closure(s), 并设置状态为未标记;
while Dstates中包含未标记的状态T do
begin
标记T;
for 各输入记号a do
begin
U := ε-closure(move(T, a));
if U不在Dstates中 then
将 U 追加到 Dstates 中,设置状态为未标记;
Dtrans[T, a] := U;
end
end

ε-closure(T)的计算方法如下:

将T中的所有状态入栈;
设置ε-closure(T)的初始值为T;
while 栈非空 do
begin
从栈顶取出元素t;
for 从t出发以ε为边能够到达的各个状态u do
if u不在ε-closure(T)中 then
begin
将u追加到ε-closure(T)中;
将u入栈;
end
end

示例

将上面生成的NFA转化为DFA。

最初,Dstates内仅有ε-closure(0) = A = {0, 1, 2, 4, 7}。然后对于状态A,对于输入记号a,计算 ε-closure(move(A, a)) = ε-closure(move({0, 1, 2, 4, 7}, a)) = ε-closure({3, 8}) = {1, 2, 3, 4, 6, 7, 8},即 B={1, 2, 3, 4, 6, 7, 8}, Dtran[A, a]=B。对于状态A,由输入记号b能够到达的仅有4->5,因此 C = ε-closure({5}) = {1, 2, 4, 5, 6, 7},即 Dtran[A, b] = C

以此类推,可得到以下的状态和Dtran

A = {0, 1, 2, 4, 7}          D = {1, 2, 4, 5, 6, 7, 9}
B = {1, 2, 3, 4, 6, 7, 8}    E = {1, 2, 4, 5, 6, 7, 10}
C = {1, 2, 4, 5, 6, 7}
状态 输入符号
a b
A B C
B B D
C B C
D B E
E B C

由此得出DFA如下图所示。

fig07.png

NFA和DFA的效率

给定正则表达式r和输入记号序列x,判断r是否能够接受x

使用NFA的情况下,由正则表达式生成NFA的时间复杂度为O(|r|),另外由于NFA的状态数最多为r的2倍,因此空间复杂度为O(|r|)。由NFA判断是否接受x时,时间复杂度为O(|r|×|x|)。因此,总体上处理时间与 r、x的长度之积成比例。这种处理方法在x不是很长时十分有效。

如果使用DFA,由于利用DFA判断是否接受x与状态数无关,因此时间复杂度为O(|x|)。但是DFA的状态数与正则表达式的长度呈指数关系。例如,正规表达式 (a|b)*a(a|b)(a|b)...(a|b),尾部有 n-1 个 (a-b)的话, DFA最小状态数也会超过 2SUP{n}。


posted on 2008-12-05 11:39  starspace  阅读(1015)  评论(0编辑  收藏  举报

导航