20200723比赛总结

下面是我对20200723的题解

T1

这一道题确定了我们可以改变矩形的长宽(也就是\(K*K\)的矩形)

所以我们自然而然地考虑到将我们以\(O(n^3)\)的时间复杂度来枚举矩形+判断答案贡献转化成用二维的差分+前缀和来将每个点作为矩形的左上角时可以对答案作出的贡献统计下来,至此,\(O(n^3)-->O(n^2)\)

部分细节看代码

代码如下:

#include<bits/stdc++.h>
using namespace std;

const int N = 2005;
int n, k;
char a[N][N];
int up[N], dwn[N], l[N], r[N];
int cnth[N][N], cnts[N][N], ans;

int main() {
	scanf("%d%d", &n, &k);
	for(int i = 1; i <= n; i++) up[i] = l[i] = n + 1;
	for(int i = 1; i <= n; i++) {
		scanf("%s", a[i] + 1);
		for(int j = 1; j <= n; j++) {
			if(a[i][j] == 'B') 
				l[i] = min(l[i], j), up[j] = min(up[j], i),
				r[i] = max(r[i], j), dwn[j] = max(dwn[j], i);
		}
	}
	for(int i = 1; i <= n; i++) {
		for(int j = 1; j <= n; j++) {
			cnth[i][j] = cnth[i - 1][j] + (l[i] >= (j - k + 1) && (r[i] <= j) && (l[i] != n + 1));
			cnts[i][j] = cnts[i][j - 1] + (up[j] >= (i - k + 1) && (dwn[j] <= i) && (up[j] != n + 1));
		}
		ans += (l[i] == n + 1) + (up[i] == n + 1);
	}
	int maxn = 0;
	for(int i = k; i <= n; i++) {
		for(int j = k; j <= n; j++) {
			maxn = max(maxn, cnth[i][j] - cnth[i - k][j] + cnts[i][j] - cnts[i][j - k]);
		}
	}
	printf("%d\n", ans + maxn);
	return 0;
}

T2

我们分析题目可以发现,对于一个连续上升或连续下降的连续的子序列,你将这个子序列划分成两个对于答案并没有影响。

但是将一个曲线从最高点或者最低点划开是更优的。

所以我们可以考虑\(O(n)\)的dp,dp是讨论在每一个极点处是在左边划分还是右边划分。

现在代码如下:

#include<bits/stdc++.h>
using namespace std;
int read() {
    char c=getchar();while(c!='-'&&!isdigit(c)) c=getchar();
    int neg=0;if (c=='-') neg=1,c=getchar();
    int num=0;while(isdigit(c)) num=num*10+c-'0',c=getchar();
    return neg?-num:num;
}
int a[10000001], b[10000001];
long long ans[2];
int main() {
    int n = read();
    int x, y, z, m;
    x = read(), y = read(), z = read(), b[1] = read(), b[2] = read(), m = read();
    int p = 0;
    for (int i = 3; i <= n; i++) b[i] = (1ll*x*b[i-1]+1ll*y*b[i-2]+z) & ((1<<30)-1);
    for (int i = 1; i <= m; i++) {
        int np, l, r;
        np = read(), l = read(), r = read();
        while (p < np) {
            ++p;
            a[p] = b[p] % (r - l + 1) + l;
        }
    }
    ans[0] = -0x3f3f3f3f3f3f3f3f, ans[1] = 0;
    int maxn = 0, minn = 0x3f3f3f3f;
    for (int i = 1; i <= n; i++)
    	/*
			p记录的是上一个极点位置在哪里,初始化为p=n,因为最开始时并没有极值
			ans[0]记录的是上一个极值是划分在左边
			ans[1]记录的是上一个极值是划分在右边		
		*/
        if (i > 1 && i < n && ((a[i] > a[i-1] && a[i] >= a[i+1]) || (a[i] < a[i-1] && a[i] <= a[i+1]))) {
            long long nxt[2] = {-0x3f3f3f3f3f3f3f3f, -0x3f3f3f3f3f3f3f3f};
            nxt[0] = max(nxt[0], ans[0] + max(maxn, a[p]) - min(minn, a[p]));
            if (p != i - 1) nxt[0] = max(nxt[0], ans[1] + maxn - minn);//为什么有这个限制条件
			//因为如果p==i-1,说明这一个点是一个点自己构成的子序列,不对答案做贡献 
            else nxt[0] = max(nxt[0], ans[1]);
            nxt[1] = max(nxt[1], ans[0] + max(maxn, max(a[p], a[i])) - min(minn, min(a[p], a[i])));
            nxt[1] = max(nxt[1], ans[1] + max(maxn, a[i]) - min(minn, a[i]));
            ans[0] = nxt[0], ans[1] = nxt[1];
            maxn = 0, minn = 0x3f3f3f3f, p = i;
        }
        else maxn = max(maxn, a[i]), minn = min(minn, a[i]);
    cout << max(ans[0] + max(maxn, a[p]) - min(minn, a[p]), ans[1] + maxn - minn) << endl;
}

T3

臣妾做不到啊。

啊,这。

posted @ 2020-07-27 21:06  starseven  阅读(75)  评论(0编辑  收藏  举报