该文被密码保护。 阅读全文
摘要:
\[ ans=\sum_{i=1}^n\sum_{j=1}^m(n\;mod\;i)\times(m\;mod\;j),i\neq j \] 我们假设 \[ n\leq m \] \[ \begin{aligned} ans & =\sum_{i=1}^n\sum_{j=1}^m(n\;mod\;i 阅读全文
摘要:
\[ ans=\sum_{i=1}^N\sum_{j=1}^N\sum_{p=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}\sum_{q=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}[gcd(i,j)=1][gcd(p, 阅读全文
摘要:
P3216 [HNOI2011]数学作业 这一道题 …… \[ n\leq 10^{18} \] 这一看就要用矩阵乘法 我们先写出递推式 \[ f(n+1)=f(n)\times 10^{calc(n+1)}+(n+1) \] 这其中,calc代表的是n+1在十进制中有多少位 既然有calc,那么我 阅读全文
摘要:
luoguP5175 数列 \[ n\leq 10^{18} \] 这摆明要用矩阵…… \[ ans=\sum_{i=1}^na_i^2 \] \[ a_n=x\cdot a_{n-1}+y\cdot a_{n-2}\Rightarrow \] \[ a_n^2=x^2a_{n-1}^2+2xy\c 阅读全文
摘要:
YY的GCD \(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) \(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\sum_{p\in prime}\sum_{i=1}^{\left\lfloo 阅读全文
摘要:
约数个数和 \[ \begin{aligned} \sum_{i=1}^{n}\sum_{j=1}^{m}d(ij) & = \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] \\ & = \sum_{x=1}^{n}\sum_ 阅读全文
摘要:
数表 \[ ans=\sum_{i=1}^{n}\sum_{j=1}^{m}[a\geq\sum_{d|gcd(i,j)}d]\times\sum_{d|gcd(i,j)}d \] 我们假设 \[ G(n,m)=\sum_{d|gcd(n,m)}d \] \[ n \leq m \] 则 \[ \b 阅读全文
摘要:
\[ ans=\sum_{i=1}^{a}\sum_{j=1}^b[gcd(a,b)=d] \] 我们假设 \[ a\leq b \] \[ \begin{aligned} ans & = \sum_{i=1}^{a}\sum_{j=1}^b[gcd(a,b)=d] \\ & = \sum_{i=1 阅读全文
摘要:
\[ ans=\sum_{i=1}^n\sum_{j=1}^nlcm(A_i,A_j) \] \[ \begin{aligned} ans & =\sum_{i=1}^n\sum_{j=1}^nlcm(A_i,A_j) \\ & =\sum_{i=1}^n\sum_{j=1}^n\frac{A_i\ 阅读全文