百练1321:棋盘问题

总时间限制: 
1000ms
 
内存限制: 
65536kB
描述
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
输入
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
输出
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
样例输入
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

样例输出

2
1

解题思路:

这个题目的大意是给定一个棋盘和给定我们需要摆放的棋子的数目,然后问我们有几种摆放方式。首先我们可以明确这是一个深度搜索的题目,与八皇后问题相似。使用DFS来累计可行的方案数,每走过一列就把它标记下来下次的时候就不可以再摆放在这一列(因为题目要求不可以将棋子摆放在同一行和同一列)

然后就从下一行开始寻找可行的地方,直到我们摆放的棋子数与我们被要求摆放的棋子数相同时,我们就将方案数进行一次加一,然后递归下去。

#include <cstdio>
#include <cstring>
char m[12][12];
int vis[12];
int n,k,ans;
void DFS(int x,int cur){
    if(cur >= k){
        ans++;
        return;
    }
    for(int i = x;i < n;i++)
    for(int j = 0;j < n;j++){
        if(!vis[j] && m[i][j] == '#'){
            vis[j] = true;
            DFS(i+1,cur+1);
            vis[j] = 0;
        }
    }
    return;
}
 int main(){
    while(~scanf("%d%d",&n,&k)){
        if(n == -1 && k == -1)break;
        memset(vis,0,sizeof(vis));
        memset(m,0,sizeof(m));
        for(int i = 0;i < n;i++)
            scanf("%s",m[i]);
        ans = 0;
        DFS(0,0);
        printf("%d\n",ans);
    }
 }

 

 

posted @ 2017-07-04 10:46  肉松松鼠  阅读(314)  评论(0编辑  收藏  举报