05 RDD编程
一、词频统计:
1.读文本文件生成RDD lines
代码:lines = sc.textFile('file:///home/hadoop/word.txt')
2.将一行一行的文本分割成单词 words flatmap()
代码:words=lines.flatMap(lambda line:line.split())
words.collect()
3.全部转换为小写 lower()
代码:#lines.flatMap(lambda line:line.lower().split()).collect()
words=lines.flatMap(lambda line:line.lower().split())
words.collect()
4.去掉长度小于3的单词 filter()
代码:words.filter(lambda word : len(word)>3).collect()
5.去掉停用词
准备停用词文本
代码:
1.准备停用词文本:
lines = sc.textFile('file:///home/hadoop/stopwords.txt')
stop = lines.flatMap(lambda line : line.split()).collect()
2.去除停用词:
words=lines.flatMap(lambda line:line.lower().split()).filter(lambda word : word not in stop)
words.collect()
6.转换成键值对 map()
代码:
words.map(lambda word : (word,1))
7.统计词频 reduceByKey()
代码:
words.map(lambda word : (word,1)).reduceByKey(lambda a,b:a+b).foreach(print)
8.按字母顺序排序 sortBy(f)
代码:
words.map(lambda word : (word,1)).reduceByKey(lambda a,b:a+b).sortBy(lambda word:word[0]).collect()
9.按词频排序 sortByKey()
代码:
words.map(lambda word : (word,1)).reduceByKey(lambda a,b:a+b).sortByKey().collect()
10.结果文件保存 saveAsTextFile(out_url)
代码:
lines = sc.textFile('file:///home/hadoop/chapter4-data01.txt')
course_rev = lines.map(lambda line:line.split(',')).map(lambda x:(x[1],(int(x[2]),1))).reduceByKey(lambda a,b:(a[0]+b[0],a[1]+b[1]))
course_rev.saveAsTextFile("file:///home/hadoop/out_url")
11. 词频结果可视化charts.WordCloud()
问题描述:1. pip在Ubuntu系统中不自带;
2. python自带版本2.7.1
3. python最新版本与pip不匹配(可能出现)
问题解决: 1. sudo apt-get install python3-pip
2. python3.6 -m pip install --upgrade pip
sudo update-alternatives --install /usr/bin/python python /usr/bin/python2.7 1
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.6 2
sudo update-alternatives --config python
12. 比较不同框架下(Python、MapReduce、Hive和Spark),实现词频统计思想与技术上的不同,各有什么优缺点.
二、学生课程分数案例
- 总共有多少学生?map(), distinct(), count()
- 代码:lines.map(lambda line : line.split(',')[0]).distinct().count()
- 开设了多少门课程?
- 代码:lines.map(lambda line : line.split(',')[1]).distinct().count()
- 每个学生选修了多少门课?map(), countByKey()
- 代码:lines.map(lambda line : line.split(',')).map(lambda line:(line[0],line[2])).countByKey()
- 每门课程有多少个学生选?map(), countByValue()
- 代码:lines.map(lambda line : line.split(',')).map(lambda line : (line[0])).countByValue()
- Roy选修了几门课?每门课多少分?filter(), map() RDD
- lines.filter(lambda line:"Roy" in line).map(lambda line:line.split(',')).collect()
- Roy选修了几门课?每门课多少分?map(),lookup() list
-
lines.map(lambda line:line.split(',')).map(lambda line:(line[0],line[1],line[2])).lookup("Roy")
-
- Roy的成绩按分数大小排序。filter(), map(), sortBy()
- lines.filter(lambda line:"Roy" in line).map(lambda line:line.split(',')).sortBy(lambda line:(line[2])).collect()
- Roy的平均分。map(),lookup(),mean()
- 代码:import numpy as np
- meanlist=lines.map(lambda line:line.split(',')).map(lambda line:(line[0],line[2])).lookup("Roy")
- np.mean([int(x) for x in meanlist])
- 生成(课程,分数)RDD,观察keys(),values()
- 代码:lines = sc.textFile('file:///home/hadoop/chapter4-data01.txt')
- words = lines.map(lambda x:x.split(',')).map(lambda x:(x[1],x[2]))
- words.keys().take(5)
- words.values().take(5)
- 每个分数+5分。mapValues(func)
- 代码:words = words.map(lambda x:(x[0],int(x[1])))
- words.mapValues(lambda x:x+1).foreach(print)
- 求每门课的选修人数及所有人的总分。combineByKey()
- 代码:course = words.combineByKey(lambda v:(v,1),lambda c,v:(c[0]+v,c[1]+1),lambda c1,c2:(c1[0]+c2[0],c1[1]+c2[1]))
- 求每门课的选修人数及平均分,精确到2位小数。map(),round()
- 代码:course_rev = course.map(lambda x:(x[0],x[1][1],round(x[1][0]/x[1][1])))
- 求每门课的选修人数及平均分。用reduceByKey()实现,并比较与combineByKey()的异同 代码:lines.map(lambda line:line.split(',')).map(lambda x:(x[1],(int(x[2]),1))).reduceByKey(lambda a,b:(a[0]+b[0],a[1]+b[1])).foreach(print)
- 结果可视化。charts,Bar()