JUnit展示图形化测试结果

package utils;

/**
 * This class Generates prime numbers up to a user specified
 * maximum. The algorithm used is the Sieve of Eratosthenes.
 * Given an array of integers starting at 2:
 * Find the first uncrossed integer, and cross out all its
 * multiples. Repeat until there are no more multiples
 * in the array.
 */
public class PrimesGenerator {

    private static boolean[] crossedOut;
    private static int[] result;

    public static int[] generatePrimes(int maxValue) {
        if (maxValue < 2) {
            return new int[0];
        } else {
            uncrossIntegersUpTo(maxValue);
            crossOutMultiples();
            putUncrossedIntegerIntoResult();
            return result;
        }
    }

    private static void putUncrossedIntegerIntoResult() {
        result = new int[numberOfUnCrossedIntegers()];
        for (int j = 0, i = 2; i < crossedOut.length; i++) {
            if (notCrossed(i)) {
                result[j++] = i;
            }
        }
    }

    private static int numberOfUnCrossedIntegers() {
        int count = 0;
        for (int i = 2; i < crossedOut.length; i++) {
            if (notCrossed(i)) {
                count++;
            }
        }
        return count;
    }

    private static void crossOutMultiples() {
        int limit = determineIterationLimit();
        for (int i = 2; i < limit; i++) {
            if (notCrossed(i)) {
                crossOutMultiplesOf(i);
            }
        }
    }

    private static int determineIterationLimit() {
        // We cross out all multiples of p; where p is prime.
        // Thus, all crossed out multiples have p and q for
        // factors. If p > sqrt of the size of the array, then
        // q will never be greater than 1. Thus p is the
        // largest prime factor in the array, and is also
        // the iteration limit.

        double iterationLimit = Math.sqrt(crossedOut.length);
        return (int) iterationLimit;
    }

    private static void crossOutMultiplesOf(int i) {
        for (int multiple = 2*i; multiple < crossedOut.length; multiple+=i) {
            crossedOut[multiple] = true;
        }
    }

    private static boolean notCrossed(int i) {
        return crossedOut[i] == false;
    }

    private static void uncrossIntegersUpTo(int maxValue) {
        crossedOut = new boolean[maxValue + 1];
        for (int i = 2; i < crossedOut.length; i++) {
            crossedOut[i] = false;
        }
    }
}
package test;

import junit.framework.*;
import utils.PrimesGenerator;

public class TestPrimesGenerator extends TestCase {
    public static void main(String[] args) {
        junit.swingui.TestRunner.main(
                new String[]{"test.TestPrimesGenerator"}
        );
    }

    public TestPrimesGenerator(String name) {
        super(name);
    }

    public void testPrimes() {
        int[] nullArray = PrimesGenerator.generatePrimes(0);
        assertEquals(nullArray.length, 0);

        int[] minArray = PrimesGenerator.generatePrimes(2);
        assertEquals(minArray.length, 1);
        assertEquals(minArray[0], 2);

        int[] threeArray = PrimesGenerator.generatePrimes(3);
        assertEquals(threeArray.length, 2);
        assertEquals(threeArray[0], 2);
        assertEquals(threeArray[1], 3);

        int[] centArray = PrimesGenerator.generatePrimes(100);
        assertEquals(centArray.length, 25);
        assertEquals(centArray[24], 97);
    }
}

 

参考:《敏捷软件开发:原则、模式与实践》

 

posted @ 2019-03-08 09:50  starinbrook  阅读(675)  评论(0编辑  收藏  举报