【51nod1806】—wangyurzee的树(purfer序列+容斥)
发现很小,显然可以考虑容斥
则不满足要求就可以变成强制为一个度数的方案
转化到树的序列
问题就变成了用个数去填个格子,有些数指定出现次数求方案
假设限制了个数,分别为
令
则方案数就是
注意特判对同一个点多个限制和的情况
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define pii pair<int,int>
#define fi first
#define se second
#define re register
#define pb push_back
inline void file(){
#ifdef Stargazer
freopen("lx.cpp","r",stdin);
#endif
}
const int mod=1e9+7;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return a>=b?a-b:a-b+mod;}
inline void Dec(int &a,int b){a=dec(a,b);}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
const int N=2000006,M=20;
int fac[N],ifac[N];
pii lim[M];
vector<int> p[M];
inline void Init(){
fac[0]=ifac[0]=1;
for(int i=1;i<N;i++)fac[i]=mul(fac[i-1],i);
ifac[N-1]=ksm(fac[N-1],mod-2);
for(int i=N-2;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
int n,m,tot,ans;
inline int C(int n,int m){
if(n<m)return 0;
return mul(fac[n],mul(ifac[m],ifac[n-m]));
}
inline void calc(int t,int prod,int s){
int now=mul(ksm(n-t,n-2-s),mul(C(n-2,s),mul(fac[s],prod)));
if(t&1)Dec(ans,now);
else Add(ans,now);
}
void dfs(int pos,int siz,int prod,int sum){
if(sum>n-2)return;
if(pos==tot+1)return calc(siz,prod,sum);
dfs(pos+1,siz,prod,sum);
for(int i=0;i<p[pos].size();i++)
dfs(pos+1,siz+1,mul(prod,ifac[p[pos][i]]),sum+p[pos][i]);
}
int main(){
file();
Init();
n=read(),m=read();
if(n==1){puts("1");return 0;}
for(int i=1;i<=m;i++)lim[i].fi=read(),lim[i].se=read();
sort(lim+1,lim+m+1);
for(int i=1;i<=m;i++){
if(lim[i].fi!=lim[i-1].fi)tot++;
p[tot].pb(lim[i].se-1);
}
dfs(1,0,1,0);
cout<<ans;
}