【LOJ#2238】【CQOI2014】—和谐矩阵(高斯消元)
直接暴力高消即可
考虑把第一行的状态设为未知量
有
就可以一行行递推了
最后把第的状态拿出来做一个高斯消元了
复杂度
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ob==ib)?EOF:*ib++;
}
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define ll long long
#define re register
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define cs const
#define bg begin
#define poly vector<int>
cs int N=44;
int g[N][N],n;
int f[N][N][N],a[N][N],m;
inline void gauss(){
for(int i=1;i<=n;i++){
int pos;
for(pos=i;pos<=n;pos++)if(a[pos][i])break;
if(pos>n)continue;
if(pos!=i)swap(a[pos],a[i]);
for(int j=i+1;j<=n;j++)
if(a[j][i])for(int k=i;k<=n;k++)a[j][k]^=a[i][k];
}
for(int i=n;i;i--){
if(!a[i][i])g[1][i]=1;
else for(int k=i+1;k<=n;k++)if(a[i][k])g[1][i]^=g[1][k];
}
}
int main(){
m=read(),n=read();
for(int i=1;i<=n;i++)f[1][i][i]=1;
for(int i=2;i<=m+1;i++)
for(int j=1;j<=n;j++)for(int k=1;k<=n;k++)f[i][j][k]=f[i-1][j][k]^f[i-1][j-1][k]^f[i-1][j+1][k]^f[i-2][j][k];
memcpy(a,f[m+1],sizeof(f[m+1]));
gauss();
for(int i=2;i<=m;i++)
for(int j=1;j<=n;j++)g[i][j]=g[i-1][j]^g[i-1][j-1]^g[i-1][j+1]^g[i-2][j];
for(int i=1;i<=m;i++,puts(""))
for(int j=1;j<=n;j++)cout<<g[i][j]<<" ";
}