【LOJ #3114】【SDOI2019】—移动金币(博弈论+数位dp)
首先这个很套路的转化成阶梯,把相邻的空看做石子
问题就变成有个石子,放在个阶梯,先手必胜的状态
考虑先手必败是奇数位置异或和为
于是可以数位
考虑先枚举给奇数填多少个,把剩下填给偶数
表示前位,还剩个石子,异或和为0的方案数
只需要枚举这一位选几个(当然必须是偶数个)
然后就完了
总方案和分配给偶数就是插板法随便算一下就完了
复杂度
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ob==ib)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define ll long long
#define re register
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define cs const
#define bg begin
#define poly vector<int>
cs int mod=1e9+9;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){return 1ll*a*b%mod;}
inline void Add(int &a,int b){(a+=b)>=mod?a-=mod:0;}
inline void Dec(int &a,int b){(a-=b)<0?a+=mod:0;}
inline void Mul(int &a,int b){a=1ll*a*b%mod;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
inline void chemx(int &a,int b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=150005,M=55;
int f[22][N],n,m,num,tot,ou,fac[N+M],ifac[N+M];
inline void init(){
cs int len=150050;
fac[0]=ifac[0]=1;
for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
ifac[len]=Inv(fac[len]);
for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
inline int C(int n,int m){
return n<m?0:mul(fac[n],mul(ifac[m],ifac[n-m]));
}
int main(){
init();
n=read(),m=read(),num=(m+1)/2,ou=m-num+1,tot=n-m;
f[20][tot]=1;
for(int i=19;~i;i--)
for(int j=0;j<=tot;j++){
for(int k=0;j+(1<<i)*k<=tot&&k<=num;k+=2)
Add(f[i][j],mul(f[i+1][j+(1<<i)*k],C(num,k)));
}
int res=0;
for(int j=0;j<=tot;j++){
Add(res,mul(f[0][j],C(j+ou-1,ou-1)));
}
int ans=C(n,m);
cout<<dec(ans,res)<<'\n';
}