【BZOJ 3462】DZY Loves Math II(组合数学+DP)
显然可以发现时答案才不为
考虑把每个的贡献表示为的形式
那么最终也就是
由于,且最多只有
所以的取值范围很小,为
考虑枚举每一种取值,那么方案数就是一个插板法
然后对于总取值很小,可以暴力背包求
乘起来即可
#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define fi first
#define ll long long
#define se second
#define bg begin
cs int RLEN=(1<<20)+1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0;bool f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=res*10+(ch^48),ch=gc();
return f?res:-res;
}
inline ll readl(){
char ch=gc();
ll res=0;bool f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=res*10+(ch^48),ch=gc();
return f?res:-res;
}
template<class tp>inline void chemx(tp&a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp&a,tp b){a>b?a=b:0;}
cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b,a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
cs int N=2000005;
int f[2][N*7];
int pr[15];
int q,s,sum,iv,cnt,x;
inline int C(ll t,int num){
int ret=1;
for(ll x=t+num-1;x>t;x--)Mul(ret,x%mod);
Mul(ret,iv);return ret;
}
int main(){
#ifdef Stargazer
freopen("lx.in","r",stdin);
#endif
x=s=read(),q=read();
for(int i=2;i*i<=s;i++){
if(s%i==0){
s/=i,pr[++cnt]=i;
if(s%i==0){
while(q--)puts("0");return 0;
}
}
}
if(s>1)pr[++cnt]=s;
s=x;
for(int i=1;i<=cnt;i++)sum+=pr[i];
f[0][0]=1;
int now=0;
for(int i=1;i<=cnt;i++){
now^=1;
memcpy(f[now],f[now^1],sizeof(f[now]));
for(int j=0;j<i*s;j++){
if(j>=pr[i])Add(f[now][j],f[now][j-pr[i]]);
if(j>=s)Dec(f[now][j],f[now^1][j-s]);
}
}
iv=1;
for(int i=1;i<cnt;i++)Mul(iv,i);iv=Inv(iv);
while(q--){
ll n=readl()-sum;int ret=0;
for(ll t=(n-cnt*s)/s;t<=n/s;t++)Add(ret,mul(C(t,cnt),f[now][n-s*t]));
cout<<ret<<'\n';
}
}