【BZOJ2694】Lcm(莫比乌斯反演)

传送门

注意到其实可以把n>1,n2∤gcd(i,j)\forall n>1,n^2\not |gcd(i,j)
写作μ(gcd(i,j))|\mu(gcd(i,j))|
然后把lcm(i,j)lcm(i,j)写作ij/gcd(i,j)ij/gcd(i,j)

然后就可以大力莫反了

最后推出来就是
T=1nS(nT)S(mT)f(T)\sum_{T=1}^{n}S(\frac n T)S(\frac m T)f(T)
其中S(n)=i=1ni,f(T)=dTdμ(d)μ(Td)(Td)2S(n)=\sum_{i=1}^ni,f(T)=\sum_{d|T}d|\mu(d)|\mu(\frac Td)(\frac T d)^2

然后发现ff可以线筛(其实nlognnlogn应该也可以)
f(1)=1,f(p)=pp2,f(p2)=p3,f(pk)=0(k>2)f(1)=1,f(p)=p-p^2,f(p^2)=-p^3,f(p^k)=0(k>2)

然后就完了

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
inline int ksm(int a,int b,int res=1){
	for(;b;b>>=1,a=a*a)if(b&1)res=res*a;return res;
}
cs int N=4000005;
int pr[N],tot;
int f[N];
bitset<N>vis;
inline void init(cs int len=N-5){
	f[1]=1;
	for(int i=2;i<=len;i++){
		if(!vis[i])pr[++tot]=i,f[i]=i-i*i;
		for(int p,j=1;j<=tot&&i*pr[j]<=len;j++){
			p=i*pr[j],vis[p]=1;
			if(i%pr[j]==0){
				if((i/pr[j])%pr[j]==0)f[p]=0;
				else f[p]=-f[i/pr[j]]*pr[j]*pr[j]*pr[j];
				break;
			}
			f[p]=f[i]*f[pr[j]];
		}
	}
	for(int i=2;i<=len;i++)f[i]+=f[i-1];
}
int n,m;
inline int s(int x){return 1ll*x*(x+1)/2;}
inline void solve(){
	n=read(),m=read();
	if(n>m)swap(n,m);
	int ret=0;
	for(int i=1,j;i<=n;i=j+1){
		j=min(n/(n/i),m/(m/i));
		ret=ret+s(n/i)*s(m/i)*(f[j]-f[i-1]);
	}
	cout<<((ret%(1<<30)+(1<<30))%(1<<30))<<'\n';
}
int main(){
	#ifdef Stargazer
	freopen("lx.in","r",stdin);
	#endif
	
	int T=read();init();
	while(T--)solve();
}
posted @ 2020-01-21 18:36  Stargazer_cykoi  阅读(196)  评论(0编辑  收藏  举报