【BZOJ1061】【Noi2008】—志愿者招募(线性规划+对偶)
Solution:
线性规划:
题目要求
满足约束
转对偶:
即求
满足约束
发现初始解可行,套板子就完了
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return ib==ob?EOF:*ib++;
}
#define gc getchar
#define pb push_back
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
const int N=1005,M=10005;
int n,m;
double f[M][N];
const double eps=1e-6,inf=1e18;
inline void povit(int l,int e){
double t=f[l][e];
for(int j=0;j<=n;j++)f[l][j]/=t;
for(int i=0;i<=m;i++)if(l!=i&&fabs(f[i][e])>0){
t=f[i][e],f[i][e]=0;
for(int j=0;j<=n;j++)f[i][j]-=t*f[l][j];
}
}
inline void simplex(){
while(1){
int l=0,e=0;double mn=inf;
for(int i=1;i<=n;i++)if(f[0][i]>eps){e=i;break;}
if(!e)break;
for(int i=1;i<=m;i++)if(f[i][e]>eps&&f[i][0]/f[i][e]<mn)
mn=f[i][0]/f[i][e],l=i;
povit(l,e);
}
}
int main(){
n=read(),m=read();
for(int i=1;i<=n;i++)f[0][i]=read();
for(int i=1;i<=m;i++){
int l=read(),r=read();f[i][0]=read();
for(int j=l;j<=r;j++)f[i][j]=1;
}
simplex();
cout<<(int)-f[0][0];
}