hadoop 2.5.0安装和配置

安装hadoop要先做以下准备:

1.jdk,安装教程在 

http://www.cnblogs.com/stardjyeah/p/4640917.html

2.ssh无密码验证,配置教程在 

http://www.cnblogs.com/stardjyeah/p/4641524.html

3.linux静态ip配置,教程在 

http://www.cnblogs.com/stardjyeah/p/4640691.html

准备好以后就可以进行hadoop 2.5.0安装和配置了

1)         解压hadoop到自己的hadoop目录

2)         2.X版本较1.X版本改动很大,主要是用Hadoop MapReduceV2(Yarn) 框架代替了一代的架构,其中JobTracker 和 TaskTracker 不见了,取而代之的是 ResourceManager, ApplicationMaster 与 NodeManager 三个部分,而具体的配置文件位置与内容也都有了相应变化,具体的可参考文献:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/

3)         hadoop/etc/hadoop/hadoop-env.sh 与 hadoop/etc/hadoop/yarn-env.sh来配置两个文件里的JAVA_HOME

4)         配置etc/hadoop/core-site.xml

<configuration>
        <property>     
                <name>fs.default.name</name>     
                <value>hdfs://localhost:9000</value>     
        </property>  
        <property>  
                <name>io.file.buffer.size</name>  
                <value>4096</value>  
        </property>  
  
        <property>  
                 <name>hadoop.tmp.dir</name>  
                 <value>/home/hadoop/hadoop/hadoop-2.5.0/tmp</value>  
        </property> 
</configuration>

5)         配置etc/hadoop/hdfs-site.xml  (注意:这里需要自己手动用mkdir创建name和data文件夹,具体位置也可以自己选择,其中dfs.replication的值建议配置为与分布式 cluster 中实际的 DataNode 主机数一致。)

<configuration>
<property>    
                <name>dfs.namenode.name.dir</name>    
                <value>/home/hadoop/hadoop/hadoop-2.5.0/hdfs/name</value> 
                <final>true</final>   
        </property>    
        <property>    
                <name>dfs.datanode.data.dir</name>     
                <value>/home/hadoop/hadoop/hadoop-2.5.0/hdfs/data</value>
                <final>true</final>    
        </property>    
        <property>    
                <name>dfs.permissions</name>    
                <value>false</value>    
       </property>  
        <property>  
                <name>dfs.replication</name>  
                <value>1</value>  
        </property>  
        <property>  
                <name>dfs.webhdfs.enabled</name>  
                <value>true</value>  
        </property>  
        <property>  
                <name>dfs.namenode.rpc-address</name>  
                <value>localhost:9000</value>  
        </property>  
        <property>  
                <name>dfs.namenode.secondary.http-address</name>  
                <value>localhost:50090</value>  
        </property> 
</configuration>

6)         配置etc/hadoop/mapred-site.xml

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>

<property>
<name>mapreduce.jobhistory.address</name>
<value>localhost:10020</value>
</property>

<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>localhost:19888</value>
</property>

<property>
<name>mapreduce.jobhistory.intermediate-done-dir</name>
<value>/home/hadoop/hadoop/hadoop-2.5.0/mr-history/tmp</value>
</property>

<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>/home/hadoop/hadoop/hadoop-2.5.0/mr-history/done</value>
</property>

</configuration>

7)         配置etc/hadoop/yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>

       <property>  
                <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>  
                <value>org.apache.hadoop.mapred.ShuffleHandler</value>  
        </property>  

<property>
<name>yarn.resourcemanager.address</name>
<value>localhost:18040</value>
</property>

<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>localhost:18030</value>
</property>

<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>localhost:18025</value>
</property>

<property>
<name>yarn.resourcemanager.admin.address</name>
<value>localhost:18041</value>
</property>

<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>localhost:8088</value>
</property>

<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/home/hadoop/hadoop/hadoop-2.5.0/mynode/my</value>
</property>

<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/home/hadoop/hadoop/hadoop-2.5.0/mynode/logs</value>
</property>

<property>
<name>yarn.nodemanager.log.retain-seconds</name>
<value>10800</value>
</property>

<property>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/logs</value>
</property>

<property>
<name>yarn.nodemanager.remote-app-log-dir-suffix</name>
<value>logs</value>
</property>

<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>-1</value>
</property>

<property>
<name>yarn.log-aggregation.retain-check-interval-seconds</name>
<value>-1</value>
</property>
</configuration>

8)         启动测试

先格式化namenode:bin/hdfs dfs namenode –format

如果没有报错则表示成功

启动hdfs: sbin/start-dfs.sh

Jps查看是否启动了namenode,datanode, SecondaryNameNode

启动yarn:start-yarn.sh

Jps查看是否启动了NodeManager, ResourceManager

然后登陆8088端口看是否会出现如下页面:

登陆50070看是否会出现如下页面:

登陆50090看是否会出现如下页面:

如果页面都出现,则表示hadoop安装成功!

下面测试一下hdfs文件系统

建立一个目录:bin/hdfs dfs -mkdir /TestDir/

上传一个文件:bin/hdfs dfs -put ./test.txt /TestDir/

上传成功,下面进行wordcount测试

1.dfs上创建input目录
$bin/hadoop fs -mkdir -p input

2.把hadoop目录下的test.txt拷贝到dfs新建的input里
$bin/hadoop fs -copyFromLocal test.txt input

3.运行WordCount
$bin/hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.5.0-sources.jar org.apache.hadoop.examples.WordCount input output

4.运行完毕后,查看单词统计结果
$bin/hadoop fs -cat output/*

假如程序的输出路径为output,如果该文件夹已经存在,先删除
$bin/hadoop dfs -rmr output

查看wordcount结果如下:

 

posted @ 2015-07-12 21:18  搞不清算法  阅读(2487)  评论(0编辑  收藏  举报