分类的性能评估:准确率、精确率、Recall召回率、F1、F2

import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model.logistic import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

df = pd.read_csv('./sms.csv')
X_train_raw, X_test_raw, y_train, y_test = train_test_split(df['message'], df['label'], random_state=11)
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train_raw)
X_test = vectorizer.transform(X_test_raw)
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
scores = cross_val_score(classifier, X_train, y_train, cv=5)
print('Accuracies: %s' % scores)
print('Mean accuracy: %s' % np.mean(scores))
Accuracies: [ 0.95221027  0.95454545  0.96172249  0.96052632  0.95209581]
Mean accuracy: 0.956220068309
precisions = cross_val_score(classifier, X_train, y_train, cv=5, scoring='precision')
print('Precision: %s' % np.mean(precisions))
recalls = cross_val_score(classifier, X_train, y_train, cv=5, scoring='recall')
print('Recall: %s' % np.mean(recalls))
f1s = cross_val_score(classifier, X_train, y_train, cv=5, scoring='f1')
print('F1 score: %s' % np.mean(f1s))
Precision: 0.992542742398
Recall: 0.683605030275
F1 score: 0.809067846627
F1是精确率和召回率的调和平均值。如果精确度为1,召回为0,那F1为0.还有F0.5和F2两种模型,分别偏重精确率和召回率。在一些场景下,召回率比精确率还更重要。

常用分类的对比
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

X, y = make_classification(
    n_samples=5000, n_features=100, n_informative=20, n_clusters_per_class=2, random_state=11)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11)

print('决策树')
clf = DecisionTreeClassifier(random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('随机森林')
clf = RandomForestClassifier(n_estimators=10, random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('逻辑回归')
clf = LogisticRegression()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('AdaBoost')
clf = AdaBoostClassifier(n_estimators=50, random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('KNN近邻')
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('SVM支持向量机')
clf = SVC(kernel='rbf', C=100, gamma=0.1).fit(X, y)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))

 


结果
决策树
              precision    recall  f1-score   support
           0       0.80      0.76      0.78       634
           1       0.76      0.80      0.78       616

    accuracy                           0.78      1250
   macro avg       0.78      0.78      0.78      1250
weighted avg       0.78      0.78      0.78      1250

随机森林
              precision    recall  f1-score   support
           0       0.79      0.86      0.82       634
           1       0.84      0.76      0.80       616

    accuracy                           0.81      1250
   macro avg       0.82      0.81      0.81      1250
weighted avg       0.82      0.81      0.81      1250

逻辑回归
              precision    recall  f1-score   support
           0       0.82      0.85      0.84       634
           1       0.84      0.81      0.83       616

    accuracy                           0.83      1250
   macro avg       0.83      0.83      0.83      1250
weighted avg       0.83      0.83      0.83      1250

AdaBoost
precision recall f1-score support

0 0.83 0.85 0.84 634
1 0.84 0.82 0.83 616

accuracy 0.83 1250
macro avg 0.83 0.83 0.83 1250
weighted avg 0.83 0.83 0.83 1250

KNN近邻
precision recall f1-score support

0 0.93 0.93 0.93 634
1 0.93 0.93 0.93 616

accuracy 0.93 1250
macro avg 0.93 0.93 0.93 1250
weighted avg 0.93 0.93 0.93 1250

SVM支持向量机
precision recall f1-score support

0 1.00 1.00 1.00 634
1 1.00 1.00 1.00 616

accuracy 1.00 1250
macro avg 1.00 1.00 1.00 1250
weighted avg 1.00 1.00 1.00 1250

 

posted @ 2019-10-22 11:16  昕友软件开发  阅读(1882)  评论(0编辑  收藏  举报
欢迎访问我的开源项目:xyIM企业即时通讯