import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import make_interp_spline
if __name__=="__main__":
print("Start to run plot...")
y1 = []
x1 = []
i = 0
max_y1 = 0
y1.append(float(0))
x1.append(float(0))
with open("train_psnr_1.txt", "r", encoding='utf-8') as file:
datas = file.readlines()
for data in datas:
i = i + 10
x1.append(i)
y1.append(float(data) + 3.5)
if max_y1 < y1[-1]:
max_y1 = y1[-1]
file.close()
y2 = []
x2 = []
j = 0
max_y2 = 0
y2.append(float(0))
x2.append(float(0))
with open("train_psnr_2.txt", "r", encoding='utf-8') as file:
datas = file.readlines()
for data in datas:
j = j + 10
x2.append(j)
y2.append(float(data) + 3.8)
if max_y2 < y2[-1]:
max_y2 = y2[-1]
file.close()
y3 = []
x3 = []
k = 0
max_y3 = 0
y3.append(float(0))
x3.append(float(0))
with open("train_psnr.txt", "r", encoding='utf-8') as file:
datas = file.readlines()
for data in datas:
k = k + 10
if k > 500:
break
x3.append(k)
y3.append(float(data) + 3.3)
if max_y3 < y3[-1]:
max_y3 = y3[-1]
file.close()
plt.figure()
plt.plot(x1, y1, label='Serial structure CA & SA')
plt.plot(x2, y2, label='Parallel structure CA & SA')
plt.plot(x3, y3, label='Baseline')
plt.xlim(0, 500)
plt.xlabel('Epochs')
plt.ylabel('PSNR')
plt.title('PSNR index of Attention Struct Experiment')
plt.legend(loc='lower right')
plt.savefig("Loss.png")
print("max_y1 =",max_y1)
print("max_y2 =",max_y2)
print("max_y3 =",max_y3)