好记性不如烂笔头

 带关键字的格式化

>>> 
>>> print "Hello %(name)s !" % {'name':'James'}
Hello James !
>>> 
>>> print "Hello {name} !".format(name="James")
Hello James !
>>> 

  

使用dict.__missing__() 避免出现KeyError

If a subclass of dict defines a method __missing__() and key is not present, 
the d[key] operation calls that method with the key(key as argument). 

The d[key] operation then returns or raises whatever is returned or raised by the __missing__(key) call. 

 

>>> 
>>> class Counter(dict):
...     def __missing__(self, key):
...         return 0
... 
>>> c = Counter()
>>> print c['num']
0
>>> c['num'] += 1
>>> print c['num']
1
>>> 
>>> c
{'num': 1}
>>>

  

__getattr__ 调用默认方法

>>> 
>>> class A(object):
...     def __init__(self,num):
...         self.num = num
...         print 'init...'
...     def mydefault(self, *args, **kwargs):
...         print 'default func...'
...         print args
...         print kwargs
...     def __getattr__(self,name):
...             print 'No %(name)s found, goto default...' % {'name':name}
...         return self.mydefault
... 
>>> a1 = A(9)
init...
>>> a1.fn1()
No fn1 found, goto default...
default func...
()
{}
>>> a1.fn2(1,2)
No fn2 found, goto default...
default func...
(1, 2)
{}
>>> a1.fn3(name='standby',age=18)
No fn3 found, goto default...
default func...
()
{'age': 18, 'name': 'standby'}
>>> 
>>> 

  

obj.xxx = aaa 		触发类的 __setattr__ 
obj.xxx       		触发类的 __getattr__ 
obj['xxx'] = 'vvv'	触发类的 __setitem__
obj['xxx']			触发类的 __getitem__


with app1.app_context():    触发	__enter__  __exit__

  

__new__ 和 __init__ 的执行顺序

>>> 
>>> class B(object):
...     def fn(self):
...         print 'B fn'
...     def __init__(self):
...         print "B INIT"
... 
>>> class A(object):
...     def fn(self):
...         print 'A fn'
...     def __new__(cls,a):
...             print "NEW", a
...             if a>10:
...                 return super(A, cls).__new__(cls)
...             return B()
...     def __init__(self,a):
...         print "INIT", a
... 
>>> 
>>> a1 = A(5)
NEW 5
B INIT
>>> a1.fn()
B fn
>>> a2=A(20)
NEW 20
INIT 20
>>> a2.fn()
A fn
>>> 

  

 类继承之 __class__

>>> 
>>> class A(object):
...     def show(self):
...         print 'base show'
... 
>>> class B(A):
...     def show(self):
...         print 'derived show'
... 
>>> obj = B()
>>> obj.show()
derived show
>>> 
>>> obj.__class__
<class '__main__.B'>
>>> 
>>> obj.__class__ = A
>>> obj.__class__
<class '__main__.A'>
>>> obj.show()
base show
>>> 

  

对象方法 __call__

>>> 
>>> class A(object):
...     def obj_func(self, *args, **kwargs):
...             print args
...             print kwargs
...     def __call__(self, *args, **kwargs):
...             print 'Object method ...'
...             return self.obj_func(*args, **kwargs)
... 
>>> a1=A()
>>> a1(9,name='standby',city='beijing')
Object method ...
(9,)
{'city': 'beijing', 'name': 'standby'}
>>> 

补充:

>>> 
>>> class test(object):
...     def __init__(self, value):
...         self.x = value
...     def __call__(self, value):
...         return self.x * value
... 
>>> a = test(4)
>>> print a(5)
20
>>> 

 补充

- 什么后面可以加括号?(只有4种表现形式)
		- 函数 		执行函数 
		- 类 		执行类的__init__方法
		- 方法           obj.func 
		- 对象 		前提:类里有 __call__ 方法
					obj()  直接执行类的 __call__方法

 

关于类的继承

>>> 
>>> class Parent(object):
...     x = 1
... 
>>> class Child1(Parent):
...     pass
... 
>>> class Child2(Parent):
...     pass
... 
>>> Child1.x = 2
>>> Parent.x = 3
>>> print Parent.x, Child1.x, Child2.x
3 2 3
>>> 

 

 类属性和对象属性

类属性

>>> 
>>> class Student:
...     score = []
... 
>>> stu1 = Student()
>>> stu2 = Student()
>>> stu1.score.append(99)
>>> stu1.score.append(96)
>>> stu2.score.append(98)
>>> 
>>> 
>>> stu2.score
[99, 96, 98]
>>> 
>>>


对象属性
>>> 
>>> class Student:
...     def __init__(self):;
...         self.lst = []
... 
>>> stu1 = Student()
>>> stu2 = Student()
>>> 
>>> 
>>> stu1.lst.append(1)
>>> stu1.lst.append(2)
>>> stu2.lst.append(9)
>>> 
>>> stu1.lst
[1, 2]
>>> 
>>> stu2.lst
[9]
>>>

 

一行代码实现列表偶数位加3后求和

>>> a = [1,2,3,4,5,6]
>>> [item+3 for item in a if a.index(item)%2==0]
[4, 6, 8]
>>> result = sum([item+3 for item in a if a.index(item)%2==0])
>>> result
18
>>>

 

字符串连接

>>> 
>>> name = 'hi ' 'standby' ' !'
>>> name
'hi standby !'
>>>

  

Python解释器中的 '_'

_ 即Python解释器上一次返回的值

>>> 
>>> range(5)
[0, 1, 2, 3, 4]
>>> _
[0, 1, 2, 3, 4]
>>> 

  

嵌套列表推导式

>>> 
>>> [(i, j) for i in range(3) for j in range(i)]
[(1, 0), (2, 0), (2, 1)]
>>> 

  

Python3 中的unpack

>>> 
>>> first, second, *rest, last = range(10)
>>> first
0
>>> second
1
>>> last
9
>>> rest
[2, 3, 4, 5, 6, 7, 8]
>>> 

  

 

关于__setattr__  __getattr__  __getitem__  __setitem__  参考:http://www.cnblogs.com/standby/p/7045718.html

 

Python把常用数字缓存在内存里 *****

>>> 
>>> a = 1
>>> b = 1
>>> a is b
True
>>> 
>>> 
>>> a = 256
>>> b = 256
>>> a is b
True
>>> 
>>> a = 257
>>> b = 257
>>> a is b
False
>>>
>>> a = 300
>>> b = 300
>>> a is b
False
>>> 

注意:在[-5,256]之间的数字用在内存中的id号是相同的

Python为了提高运行效率而将这些常用数字缓存到内存里了,所以他们的id号是相同的;

另外,对a,b,c,....等的赋值也只是一种引用而已

>>> 
>>> id(9)
10183288
>>> num = 9
>>> id(num)
10183288
>>> 

 

Python对于短字符串会使用同一个空间,但是对于长字符串会重新开辟空间

>>> 
>>> a = 'I love PythonSomething!'
>>> b = 'I love PythonSomething!'
>>> c = [1, 2, 3]
>>> d = [1, 2, 3]
>>> 
>>> a is b
False
>>> c is d
False
>>> 
>>> id(a)
139848068316272
>>> id(b)
139848068316336
>>> id(c)
139848068310152
>>> id(d)
139848068309936
>>> 

 

字符串 * 操作

>>> 
>>> def func(a):
...     a = a + '2'
...     a = a*2
...     return a
... 
>>> 
>>> func("hello")
'hello2hello2'
>>> 

  

Python浮点数比较

>>> 
>>> 0.1
0.10000000000000001
>>> 0.2
0.20000000000000001
>>> 0.1 + 0.2
0.30000000000000004
>>> 
>>> 0.3
0.29999999999999999
>>> 
>>> 0.1 + 0.2 == 0.3 
False
>>> 

  

Python里的 '~' 取反

>>> 
>>> 5
5
>>> ~5
-6
>>> ~~5
5
>>> ~~~5
-6
>>> ~~~~5
5
>>> 

~5 即对5取反,得到的是 -6 , 为什么?

参考:https://www.cnblogs.com/piperck/p/5829867.html 和 http://blog.csdn.net/u011080472/article/details/51280919

    - 原码就是符号位加上真值的绝对值;

    - 反码的表示方法是:正数的反码就是其本身;负数的反码是在其原码的基础上, 符号位不变,其余各个位取反;

    - 补码的表示方式是:正数的补码就是其本身;负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1 (即在反码的基础上+1)

  真值 原码 反码 补码
5 +000 0101 0000 0101 0000 0101 0000 0101
-5 -000 0101 1000 0101 1111 1010 1111 1011

 

 

 

对5取反即对 0000 0101 取反, 得到 1111 1010,那这个值的十进制是多少呢?

因为 负数在计算机中是以补码形式表示的, 所以实际上就是求哪个值的补码是 1111 1010

按照上面的规则反向计算:

1111 1010  减1 得到其反码表示:1111 1001

在保证符号位不变,其余各位取反:1000 0110 就是该值的原码,对应真值就是 -000 0110 ,对应十进制就是 -6 。

 

那么对 -6 取反,得到的是多少呢?

对-6取反即对 -6 的补码取反,就是对1111 1010取反,得到 0000 0101,很明显是一个正数。

而正数原码==正数反码==正数补码,所以该值的原码就是 0000 0101,真值就是 +000 0101,对应十进制就是 5。

 

bool()

>>> 
>>> bool('True')
True
>>> bool('False')
True
>>> bool('')
False
>>> bool()
False
>>> 
>>> 
>>> bool(1)
True
>>> bool(0)
False
>>> 

  

等价于

>>> 
>>> True==False==False
False
>>> 
>>> True==False and False==False
False
>>> 

  

>>> 
>>> 1 in [0,1]
True
>>> 1 in [0,1] == True
False
>>> 
>>> (1 in [0,1]) == True
True
>>> 
>>> 1 in ([0,1] == True)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: argument of type 'bool' is not iterable
>>> 
>>> 
>>> 
>>> (1 in [0,1]) and ([0,1] == True)
False
>>>

Note that comparisons, membership tests, and identity tests,

all have the same precedence and have a left-to-right chaining feature as described in the Comparisons section.

参考:https://stackoverflow.com/questions/31354429/why-is-true-is-false-false-false-in-python

 

while 结合 break

>>> 
>>> i = 0
>>> while i < 5:
...     print(i)
...     i += 1
...     if i == 3:
...         break
... else:
...     print(0)
... 
0
1
2
>>> 

  

set给list去重

>>> 
>>> nums = set([1,1,2,3,3,3,4])
>>> 
>>> nums
set([1, 2, 3, 4])
>>> 
>>> type(nums)
<type 'set'>
>>> 
>>> len(nums)
4
>>> 
>>> 
>>> li = list(nums)
>>> li
[1, 2, 3, 4]
>>> 
>>> type(li)
<type 'list'>
>>> 

 

函数是第一类对象(First-Class Object)

在 Python 中万物皆为对象,函数也不例外,

函数作为对象可以赋值给一个变量、可以作为元素添加到集合对象中、

可作为参数值传递给其它函数,还可以当做函数的返回值,这些特性就是第一类对象所特有的。

函数可以嵌套,函数中里面嵌套的函数不能在函数外面访问,只能是在函数内部使用:

def get_length(text):
    def clean(t):
        return t[1:]
    res = clean(text)
    return len(res)

print(get_length('standby'))

  

Python里的高阶函数

函数接受一个或多个函数作为输入或者函数输出(返回)的值是函数时,我们称这样的函数为高阶函数。

Python内置函数中,典型的高阶函数是 map 函数,map 接受一个函数和一个迭代对象作为参数,

调用 map 时,依次迭代把迭代对象的元素作为参数调用该函数。

def foo(text):
    return len(text)

li = map(foo, ["the","zen","of","python"])
print(li)        # <map object at 0x0000000001119FD0>
li = list(li)
print(li)        # [3, 3, 2, 6]

 

lambda应用场景 

    - 函数式编程

有一个列表: list1 = [3,5,-4,-1,0,-2,-6],需要按照每个元素的绝对值升序排序,如何做?

# 使用lambda的方式
>>>
>>> list1
[3, 5, -4, -1, 0, -2, -6]
>>>
>>> sorted(list1, key=lambda i : abs(i))
[0, -1, -2, 3, -4, 5, -6]
>>>

# 不使用lambda的方式
>>>
>>> def foo(x):
...     return abs(x)
...
>>> sorted(list1, key=foo)
[0, -1, -2, 3, -4, 5, -6]
>>>

如何把一个字典按照value进行排序?

>>>
>>> dic = {'a': 9, 'c': 3, 'b': 1, 'd': 7, 'f': 12}
>>> dic
{'a': 9, 'f': 12, 'c': 3, 'd': 7, 'b': 1}
>>>
>>> from collections import Iterable
>>> isinstance(dic.items(),Iterable)
True
>>>
>>> dic.items()
dict_items([('a', 9), ('f', 12), ('c', 3), ('d', 7), ('b', 1)])
>>>
>>> sorted(dic.items(), key=lambda x:x[1])
[('b', 1), ('c', 3), ('d', 7), ('a', 9), ('f', 12)]
>>>

 

2019-08-20补充示例:列表排序

In [57]: ver                                                                                                                                                                                                                              
Out[57]: 
['10.3',
 '15.100',
 '10.50',
 '2.3',
 '10.30',
 '2.1',
 '10.0',
 '10.6',
 '10.20',
 '4.0',
 '3.0',
 '10.2',
 '10.8',
 '10.1',
 '15.0',
 '10.10',
 '10.9']

In [58]: ver.sort(key=lambda x:tuple(int(v) for v in x.split(".")), reverse=True)                                                                                                                                                         

In [59]: ver                                                                                                                                                                                                                              
Out[59]: 
['15.100',
 '15.0',
 '10.50',
 '10.30',
 '10.20',
 '10.10',
 '10.9',
 '10.8',
 '10.6',
 '10.3',
 '10.2',
 '10.1',
 '10.0',
 '4.0',
 '3.0',
 '2.3',
 '2.1']

In [60]: 

 

  - 闭包

# 不用lambda的方式
>>>
>>> def my_add(n):
...     def wrapper(x):
...         return x+n
...     return wrapper
...
>>> add_3 = my_add(3)
>>> add_3(7)
10
>>>

# 使用lambda的方式
>>>
>>> def my_add(n):
...     return lambda x:x+n
...
>>> add_3 = my_add(3)
>>> add_3(7)
10
>>>

  

方法和函数的区别

#!/usr/bin/python3

from types import MethodType,FunctionType

class Foo(object):
    def __init__(self):
        pass
    def func(self):
        print('func...')

obj = Foo()
print(obj.func)  # 自动传递 self 
# <bound method Foo.func of <__main__.Foo object at 0x7f86121505f8>>
print(Foo.func)
# <function Foo.func at 0x7f861214e488>

print(isinstance(obj.func,MethodType))         # True
print(isinstance(obj.func,FunctionType))       # False

print(isinstance(Foo.func,MethodType))         # False
print(isinstance(Foo.func,FunctionType))       # True

时间戳转换成年月日时分秒

>>> from datetime import datetime
>>> ts=1531123200
>>> date_str = datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
>>> date_str
'2018-07-09 16:00:00'
>>> 
In [11]: import time                                                                                                                                                                                                                      

In [12]: ts = int(time.time())                                                                                                                                                                                                            

In [13]: ts                                                                                                                                                                                                                               
Out[13]: 1559549982

In [14]: time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(ts))                                                                                                                                                                           
Out[14]: '2019-06-03 16:19:42'

In [15]: 

年月日时分秒转换成时间戳

>>> date_str
'2018-07-09 16:00:00'
>>> 
>>> date_struct=time.strptime(date_str,'%Y-%m-%d %H:%M:%S')
>>> date_struct
time.struct_time(tm_year=2018, tm_mon=7, tm_mday=9, tm_hour=16, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=190, tm_isdst=-1)
>>> 
>>> int(time.mktime(date_struct))
1531123200
>>> 
In [16]: d                                                                                                                                                                                                                                
Out[16]: '2019-06-03 16:19:42'

In [17]: time.mktime(time.strptime(d, "%Y-%m-%d %H:%M:%S"))                                                                                                                                                                               
Out[17]: 1559549982.0

In [18]: 

日期是时间戳相互转换

def date2ts(date_str, layout="%Y-%m-%d %H:%M:%S"):
    date_struct=time.strptime(date_str, layout)
    return int(time.mktime(date_struct))

def ts2date(ts, layout="%Y-%m-%d %H:%M:%S"):
    ts = int(ts)
    return datetime.datetime.fromtimestamp(ts).strftime(layout)

dis = pd.date_range(start='2023-06-01 00:00:00', end='2023-07-01 00:00:00', freq="5min", closed="left").to_list()
tss = [ int(di.tz_localize("Asia/Shanghai").timestamp()) for di in dis ]

获取当前月初和月末时间戳

>>> import time
>>> import datetime
>>> 
>>> start_st = datetime.datetime.now()
>>> start_st
datetime.datetime(2018, 7, 17, 16, 45, 39, 95228)
>>> startts = int(time.mktime((start_st.year, start_st.month-1, 1, 0, 0, 0, 0, 0, -1)))
>>> startts    # 当前月初时间戳
1527782400
>>> 
>>> stopts = int(time.mktime((start_st.year, start_st.month, 1, 0, 0, 0, 0, 0, -1))) - 1
>>> stopts
1530374399     # 当前月末时间戳
>>>

IP地址转换成数字,从而进行比较,适用于地址库

# 方法一:手动计算

In [62]: ip                                                                                                                                                                                                                               
Out[62]: '10.3.81.150'

In [63]: ip.split('.')[::-1]                                                                                                                                                                                                              
Out[63]: ['150', '81', '3', '10']

In [64]: [ '{}-{}'.format(idx,num) for idx,num in enumerate(ip.split('.')[::-1]) ]                                                                                                                                                        
Out[64]: ['0-150', '1-81', '2-3', '3-10']

In [65]: [256**idx*int(num) for idx,num in enumerate(ip.split('.')[::-1])]                                                                                                                                                                
Out[65]: [150, 20736, 196608, 167772160]

In [66]: sum([256**idx*int(num) for idx,num in enumerate(ip.split('.')[::-1])])                                                                                                                                                           
Out[66]: 167989654

In [67]:

# 方法二:使用C扩展库来计算
In [71]: import socket,struct                                                                                                                                                                                                             

In [72]: socket.inet_aton(ip)                                                                                                                                                                                                             
Out[72]: b'\n\x03Q\x96'

In [73]: struct.unpack("!I", socket.inet_aton(ip))     # !表示使用网络字节顺序解析, 后面的I表示unsigned int, 对应Python里的integer or long                                                                                                                                                                         
Out[73]: (167989654,)

In [74]: struct.unpack("!I", socket.inet_aton(ip))[0]                                                                                                                                                                                     
Out[74]: 167989654

In [75]: socket.inet_ntoa(struct.pack("!I", 167989654))                                                                                                                                                                                   
Out[75]: '10.3.81.150'

In [76]: 

使用yield逐行读取多个文件并合并

#!/usr/bin/python2.7

def get_line_by_yield():
    with open('total.txt','r') as rf_total, open('extra.txt','r') as rf_extra:
        for line in rf_total:
            extra = rf_extra.readline()
            lst = line.strip().split() + extra.strip().split()
            yield lst

with open('new_total.txt','w') as wf:
    for lst in get_line_by_yield():
        wf.write('%s\n' % ''.join(map(lambda i: str(i).rjust(20), lst)))

逐行读取

def read_line(path):
    with open(path,'r') as rf:
        for line in rf:
            yield line

  

 

检查进程是否 running

In [16]: import signal

In [17]: from os import kill

In [18]: kill(17335, 0)    # 17335 是进程ID,第二个参数传0/signal.SIG_DFL 返回值若是None则表示正在运行

In [19]: kill(17335, 15)   # 给进程传递15/signal.SIGTERM,即终止该进程

In [20]: kill(17335, 0)    # 再次检查发现该进程已经不再running,则raise一个OSError
---------------------------------------------------------------------------
OSError                                   Traceback (most recent call last)
<ipython-input-20-cbb7c9624124> in <module>()
----> 1 kill(17335, 0)

OSError: [Errno 3] No such process

In [21]: 
  1 In [12]: import signal
  2 
  3 In [13]: signal.SIGKILL
  4 Out[13]: 9
  5 
  6 In [14]: signal.SIGTERM
  7 Out[14]: 15
  8 
  9 In [15]: signal.__dict__.items()
 10 Out[15]: 
 11 [('SIGHUP', 1),
 12  ('SIG_DFL', 0),
 13  ('SIGSYS', 31),
 14  ('SIGQUIT', 3),
 15  ('SIGUSR1', 10),
 16  ('SIGFPE', 8),
 17  ('SIGPWR', 30),
 18  ('SIGTSTP', 20),
 19  ('ITIMER_REAL', 0L),
 20  ('SIGCHLD', 17),
 21  ('SIGCONT', 18),
 22  ('SIGIOT', 6),
 23  ('SIGBUS', 7),
 24  ('SIGXCPU', 24),
 25  ('SIGPROF', 27),
 26  ('SIGCLD', 17),
 27  ('SIGUSR2', 12),
 28  ('default_int_handler', <function signal.default_int_handler>),
 29  ('pause', <function signal.pause>),
 30  ('SIGKILL', 9),
 31  ('NSIG', 65),
 32  ('SIGTRAP', 5),
 33  ('SIGINT', 2),
 34  ('SIGIO', 29),
 35  ('__package__', None),
 36  ('getsignal', <function signal.getsignal>),
 37  ('SIGILL', 4),
 38  ('SIGPOLL', 29),
 39  ('SIGABRT', 6),
 40  ('SIGALRM', 14),
 41  ('__doc__',
 42   'This module provides mechanisms to use signal handlers in Python.\n\nFunctions:\n\nalarm() -- cause SIGALRM after a specified time [Unix only]\nsetitimer() -- cause a signal (described below) after a specified\n               float time and the timer may restart then [Unix only]\ngetitimer() -- get current value of timer [Unix only]\nsignal() -- set the action for a given signal\ngetsignal() -- get the signal action for a given signal\npause() -- wait until a signal arrives [Unix only]\ndefault_int_handler() -- default SIGINT handler\n\nsignal constants:\nSIG_DFL -- used to refer to the system default handler\nSIG_IGN -- used to ignore the signal\nNSIG -- number of defined signals\nSIGINT, SIGTERM, etc. -- signal numbers\n\nitimer constants:\nITIMER_REAL -- decrements in real time, and delivers SIGALRM upon\n               expiration\nITIMER_VIRTUAL -- decrements only when the process is executing,\n               and delivers SIGVTALRM upon expiration\nITIMER_PROF -- decrements both when the process is executing and\n               when the system is executing on behalf of the process.\n               Coupled with ITIMER_VIRTUAL, this timer is usually\n               used to profile the time spent by the application\n               in user and kernel space. SIGPROF is delivered upon\n               expiration.\n\n\n*** IMPORTANT NOTICE ***\nA signal handler function is called with two arguments:\nthe first is the signal number, the second is the interrupted stack frame.'),
 43  ('SIG_IGN', 1),
 44  ('getitimer', <function signal.getitimer>),
 45  ('SIGURG', 23),
 46  ('SIGPIPE', 13),
 47  ('SIGWINCH', 28),
 48  ('__name__', 'signal'),
 49  ('SIGTERM', 15),
 50  ('SIGVTALRM', 26),
 51  ('ITIMER_PROF', 2L),
 52  ('SIGRTMIN', 34),
 53  ('SIGRTMAX', 64),
 54  ('ITIMER_VIRTUAL', 1L),
 55  ('set_wakeup_fd', <function signal.set_wakeup_fd>),
 56  ('setitimer', <function signal.setitimer>),
 57  ('signal', <function signal.signal>),
 58  ('SIGSEGV', 11),
 59  ('siginterrupt', <function signal.siginterrupt>),
 60  ('SIGXFSZ', 25),
 61  ('SIGTTIN', 21),
 62  ('SIGSTOP', 19),
 63  ('ItimerError', signal.ItimerError),
 64  ('SIGTTOU', 22),
 65  ('alarm', <function signal.alarm>)]
 66 
 67 In [16]: dict((k, v) for v, k in reversed(sorted(signal.__dict__.items()))
 68     ...:     if v.startswith('SIG') and not v.startswith('SIG_'))
 69 Out[16]: 
 70 {1: 'SIGHUP',
 71  2: 'SIGINT',
 72  3: 'SIGQUIT',
 73  4: 'SIGILL',
 74  5: 'SIGTRAP',
 75  6: 'SIGABRT',
 76  7: 'SIGBUS',
 77  8: 'SIGFPE',
 78  9: 'SIGKILL',
 79  10: 'SIGUSR1',
 80  11: 'SIGSEGV',
 81  12: 'SIGUSR2',
 82  13: 'SIGPIPE',
 83  14: 'SIGALRM',
 84  15: 'SIGTERM',
 85  17: 'SIGCHLD',
 86  18: 'SIGCONT',
 87  19: 'SIGSTOP',
 88  20: 'SIGTSTP',
 89  21: 'SIGTTIN',
 90  22: 'SIGTTOU',
 91  23: 'SIGURG',
 92  24: 'SIGXCPU',
 93  25: 'SIGXFSZ',
 94  26: 'SIGVTALRM',
 95  27: 'SIGPROF',
 96  28: 'SIGWINCH',
 97  29: 'SIGIO',
 98  30: 'SIGPWR',
 99  31: 'SIGSYS',
100  34: 'SIGRTMIN',
101  64: 'SIGRTMAX'}
102 
103 In [17]: 
signal数字和代号的映射关系
1 def check_if_process_is_alive(self):
2         try:
3             kill(self.current_pid, 0)
4             kill(self.parent_pid, 0)
5         except:
6             # do something...
7             exit(0)
应用

  参考:https://stackoverflow.com/questions/13399734/how-to-find-out-when-subprocess-has-terminated-after-using-os-kill

 

多指标排序问题

In [26]: lst = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

In [27]: import operator

In [28]: sorted(lst, key=operator.itemgetter(1))
Out[28]: [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

In [29]: sorted(lst, key=operator.itemgetter(1,2))  # 先根据第二个域排序,然后再根据第三个域排序
Out[29]: [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

In [30]: 

  

两个纯数字列表元素个数相等,按序相加求和,得到一个新的列表

length = len(lst1)
lst = reduce(lambda x,y:[x[i]+y[i] for i in range(length)], [lst1,lst2], [0]*length)

或者直接使用numpy.array

补充reduce+lambda合并多个列表

In [15]: lst = [[1,2,3],['a','c'],['hello','world'],[2,2,2,111]]

In [16]: reduce(lambda x,y: x+y, lst)
Out[16]: [1, 2, 3, 'a', 'c', 'hello', 'world', 2, 2, 2, 111]

In [17]: 

扩展示例1:

lst= [[{u'timestamp': 1545214320, u'value': 222842128},
  {u'timestamp': 1545214380, u'value': 224080288},
  {u'timestamp': 1545214440, u'value': 253812496},
  {u'timestamp': 1545214500, u'value': 295170240},
  {u'timestamp': 1545214560, u'value': 221196224},
  {u'timestamp': 1545214620, u'value': 252992096}],
 [{u'timestamp': 1545214320, u'value': 228121600},
  {u'timestamp': 1545214380, u'value': 225682656},
  {u'timestamp': 1545214440, u'value': 256428064},
  {u'timestamp': 1545214500, u'value': 292691424},
  {u'timestamp': 1545214560, u'value': 241462336},
  {u'timestamp': 1545214620, u'value': 250864528}],
 [{u'timestamp': 1545214320, u'value': 232334304},
  {u'timestamp': 1545214380, u'value': 230452032},
  {u'timestamp': 1545214440, u'value': 246094880},
  {u'timestamp': 1545214500, u'value': 260281088},
  {u'timestamp': 1545214560, u'value': 233277120},
  {u'timestamp': 1545214620, u'value': 258726192}]]

# 要求:把上述列表合并
# 方法一:使用Python内置函数
In [83]: reduce(lambda x,y:[ { 'timestamp':x[i]['timestamp'], 'value':x[i]['value']+y[i]['value'] } for i in range(6) ], a)
Out[83]: 
[{'timestamp': 1545214320, 'value': 683298032},
 {'timestamp': 1545214380, 'value': 680214976},
 {'timestamp': 1545214440, 'value': 756335440},
 {'timestamp': 1545214500, 'value': 848142752},
 {'timestamp': 1545214560, 'value': 695935680},
 {'timestamp': 1545214620, 'value': 762582816}]

In [84]:

# 方法二:笨办法
 In [87]: b = a.pop(0)

In [88]: 

In [88]: for i in a:
    ...:     for idx in range(len(i)):
    ...:         b[idx]['value'] += i[idx]['value']
    ...:         

In [89]: b
Out[89]: 
[{u'timestamp': 1545214320, u'value': 683298032},
 {u'timestamp': 1545214380, u'value': 680214976},
 {u'timestamp': 1545214440, u'value': 756335440},
 {u'timestamp': 1545214500, u'value': 848142752},
 {u'timestamp': 1545214560, u'value': 695935680},
 {u'timestamp': 1545214620, u'value': 762582816}]

In [90]: 

扩展示例2:

In [48]: a
Out[48]: 
[{'A078102C949EC2AB': [1, 2, 3, 4]},
 {'457D37015E77700E': [2, 2, 2, 2]},
 {'5095060C4552175D': [3, 3, 3, 3]}]

In [49]: reduce(lambda x,y: dict(x.items()+y.items()), a)
Out[49]: 
{'457D37015E77700E': [2, 2, 2, 2],
 '5095060C4552175D': [3, 3, 3, 3],
 'A078102C949EC2AB': [1, 2, 3, 4]}

In [50]: 

 

awk指定字段求和

awk -F '=' '{count+=$4} END{print count}' file.log

 

找出在列表1中但不在列表2中的元素

list(set(lst1).difference(set(lst2)))

  

解析url,把字段转换成字典

# 方法一
In [5]: url = 'index?name=standby&age=18&city=beijing'

In [6]: parameter = url.split('?')[1]

In [7]: parameter
Out[7]: 'name=standby&age=18&city=beijing'

In [8]: dict(map(lambda x:x.split('='),parameter.split('&')))
Out[8]: {'age': '18', 'city': 'beijing', 'name': 'standby'}

In [9]: 


# 方法二
In [9]: import urlparse

In [10]: query = urlparse.urlparse(url).query

In [11]: query
Out[11]: 'name=standby&age=18&city=beijing'

In [12]: dict([(k, v[0]) for k, v in urlparse.parse_qs(query).items()])
Out[12]: {'age': '18', 'city': 'beijing', 'name': 'standby'}

In [13]: 

 

fromkeys使用的陷阱

In [1]: a = dict.fromkeys(['k1','k2','k3'],{})

In [2]: a
Out[2]: {'k1': {}, 'k2': {}, 'k3': {}}

In [3]: a['k1']['2018-10-10'] = 'hi'

In [4]: a
Out[4]: 
{'k1': {'2018-10-10': 'hi'},
 'k2': {'2018-10-10': 'hi'},
 'k3': {'2018-10-10': 'hi'}}

In [5]: 

In [5]: a = dict.fromkeys(['k1','k2','k3'],[])

In [6]: a['k1'].append(999)

In [7]: a
Out[7]: {'k1': [999], 'k2': [999], 'k3': [999]}

In [8]: 

In [8]: a = dict.fromkeys(['k1','k2','k3'],0)

In [9]: a['k1'] += 9

In [10]: a
Out[10]: {'k1': 9, 'k2': 0, 'k3': 0}

In [11]: 

  

dateutil库解析时间对象

In [76]: import datetime                                                                                                                                                                          

In [77]: datetime.datetime.strptime('2019-04-10','%Y-%m-%d')                                                                                                                                      
Out[77]: datetime.datetime(2019, 4, 10, 0, 0)

In [78]: import dateutil                                                                                                                                                                          

In [79]: dateutil.parser.parse('2019-04-10')                                                                                                                                                      
Out[79]: datetime.datetime(2019, 4, 10, 0, 0)

In [80]: dateutil.parser.parse('2019/04/10')                                                                                                                                                      
Out[80]: datetime.datetime(2019, 4, 10, 0, 0)

In [81]: dateutil.parser.parse('04/10/2019')                                                                                                                                                      
Out[81]: datetime.datetime(2019, 4, 10, 0, 0)

In [82]: dateutil.parser.parse('2019-Apr-10')                                                                                                                                                     
Out[82]: datetime.datetime(2019, 4, 10, 0, 0)

In [83]: 

 

合并多个字典

# Python2.7
# 这种方式对资源的一种浪费
# 注意这种方式在Python3中会报错:TypeError: unsupported operand type(s) for +: 'dict_items' and 'dict_items'

In [7]: lst
Out[7]: 
[{'k1': [1, 1, 1, 1, 1, 1]},
 {'k3': [3, 3, 3, 4, 4, 4]},
 {'k5': [5, 5, 5, 6, 6, 6]}]

In [8]: reduce(lambda x,y: dict(x.items()+y.items()), lst)
Out[8]: {'k1': [1, 1, 1, 1, 1, 1], 'k3': [3, 3, 3, 4, 4, 4], 'k5': [5, 5, 5, 6, 6, 6]}

In [9]: 


# Python3.6
In [67]: lst                                                                                                                                                                                                                              
Out[67]: 
[{'k1': [1, 1, 1, 1, 1, 1]},
 {'k3': [3, 3, 3, 4, 4, 4]},
 {'k5': [5, 5, 5, 6, 6, 6]}]

In [68]: reduce(lambda x,y: {**x,**y}, lst)                                                                                                                                                                                               
Out[68]: {'k1': [1, 1, 1, 1, 1, 1], 'k3': [3, 3, 3, 4, 4, 4], 'k5': [5, 5, 5, 6, 6, 6]}

In [69]:


# 另外补充两种兼容Py2和Py3的方法:
# 1. 使用字典的构造函数
reduce(lambda x,y: dict(x, **y), lst)
# 2. 笨办法
{k: v for d in lst for k, v in d.items()}

  

zip的反操作/unzip

In [2]: lst                                                                                                                                                                                                                               
Out[2]: 
[[1560239100, 16],
 [1560239400, 11],
 [1560239700, 14],
 [1560240000, 18],
 [1560240300, 18],
 [1560240600, 12],
 [1560240900, 19],
 [1560241200, 13],
 [1560241500, 16],
 [1560241800, 16]]

In [3]: tss,vals = [ list(tpe) for tpe in zip(*[ i for i in lst ]) ]                                                                                                                                                                      

In [4]: tss                                                                                                                                                                                                                               
Out[4]: 
[1560239100,
 1560239400,
 1560239700,
 1560240000,
 1560240300,
 1560240600,
 1560240900,
 1560241200,
 1560241500,
 1560241800]

In [5]: vals                                                                                                                                                                                                                              
Out[5]: [16, 11, 14, 18, 18, 12, 19, 13, 16, 16]

In [6]: 

 

获取前一天时间并格式化

In [17]: from datetime import timedelta, datetime                                                                                                                                                                                         

In [18]: yesterday = datetime.today() + timedelta(-1)                                                                                                                                                                                     

In [19]: yesterday.strftime('%Y%m%d')                                                                                                                                                                                                     
Out[19]: '20190702'

In [20]: 

  

 时序数据列表转换位字典结构

In [87]: lst                                                                                                                                                                                                                              
Out[87]: 
[(1562653200, 16408834),
 (1562653500, 16180209),
 (1562653800, 16178061),
 (1562654100, 16147492),
 (1562654400, 16103304),
 (1562654700, 16182462),
 (1562655000, 16334665),
 (1562655300, 15440130),
 (1562655600, 15433254),
 (1562655900, 16607189)]

In [88]: { ts:value for ts,value in lst }                                                                                                                                                                                                 
Out[88]: 
{1562653200: 16408834,
 1562653500: 16180209,
 1562653800: 16178061,
 1562654100: 16147492,
 1562654400: 16103304,
 1562654700: 16182462,
 1562655000: 16334665,
 1562655300: 15440130,
 1562655600: 15433254,
 1562655900: 16607189}

In [89]: 

  

JavaScript实现table点击列头自动排序

 1 function comparer(index) {
 2      return function(a, b) {
 3        var valA = getCellValue(a, index),
 4          valB = getCellValue(b, index);
 5        return $.isNumeric(valA) && $.isNumeric(valB) ?
 6          valA - valB : valA.localeCompare(valB);
 7      };
 8 }
 9 function getCellValue(row, index) {
10     return $(row).children('td').eq(index).text();
11 }
12 $(document).on('click', 'th', function() {
13     var table = $(this).parents('table').eq(0);
14     var rows = table.find('tr:gt(0)').toArray().sort(comparer($(this).index()));
15     this.asc = !this.asc;
16     if (!this.asc) {
17       rows = rows.reverse();
18     }
19     table.children('tbody').empty().html(rows);
20 });

 

模拟登录

1 #1 curl 模拟登录并请求数据
2 curl -X GET -u username:password "http://...."
3 
4 #2 python requests 模拟登录并请求数据
5 import requests
6 from requests.auth import HTTPBasicAuth
7 requests.get("http://....",auth=HTTPBasicAuth(username, password))

 

IP地址排序

In [37]: ips                                                                                                                                                                                                                              
Out[37]: 
['10.0.9.11',
 '10.13.8.1',
 '10.8.1.12',
 '10.0.120.99',
 '10.8.1.110',
 '10.0.13.12']

In [38]: sorted(ips)                                                                                                                                                                                                                      
Out[38]: 
['10.0.120.99',
 '10.0.13.12',
 '10.0.9.11',
 '10.13.8.1',
 '10.8.1.110',
 '10.8.1.12']

In [39]: sorted(ips, key=lambda x:''.join([ i.rjust(3,'0') for i in x.split('.') ]))                                                                                                                                                      
Out[39]: 
['10.0.9.11',
 '10.0.13.12',
 '10.0.120.99',
 '10.8.1.12',
 '10.8.1.110',
 '10.13.8.1']

In [40]: 

  

生成随机字符串

In [7]: import random                                                                                                                                                                                                                     

In [8]: import string                                                                                                                                                                                                                     

In [9]: def id_generator(size): 
   ...:     chars = string.ascii_letters+string.digits 
   ...:     return ''.join(random.choice(chars) for _ in range(size)) 
   ...:                                                                                                                                                                                                                                   

In [10]: id_generator(9)                                                                                                                                                                                                                  
Out[10]: 'fL58Mqb7p'

In [11]: id_generator(9)                                                                                                                                                                                                                  
Out[11]: 'dijygQlZZ'

In [13]: id_generator(12)                                                                                                                                                                                                                 
Out[13]: 'k4Vki2BxREIy'

In [14]: id_generator(7)                                                                                                                                                                                                                  
Out[14]: 'N6sZmGK'

In [15]: 

 

生成指点范围时间戳列表

dis = pd.date_range(start='2022-12-22 00:00:00', end='2023-01-01 00:00:00', freq="min", closed="left").to_list()
tss = [ int(di.tz_localize("Asia/Shanghai").timestamp()) for di in dis ]

 

生成上个月日期列表(每天)

now_dt = datetime.datetime.now()
month_dt = now_dt.replace(day=1) - datetime.timedelta(days=1)
month = month_dt.strftime('%Y%m')
s_date_str = month_dt.strftime('%Y-%m-01 00:00:00')
e_date_str = now_dt.strftime('%Y-%m-01 00:00:00')
days = pd.date_range(start=s_date_str, end=e_date_str, freq="D", closed="left", tz="Asia/Shanghai").tolist()
day_str_lst = [day.strftime("%Y%m%d%H%M%S") for day in days]

 

Pandas生成Excel文件  reference

with pd.ExcelWriter('output.xlsx') as writer:  
    df1.to_excel(writer, sheet_name='Sheet_name_1')
    df2.to_excel(writer, sheet_name='Sheet_name_2')

解析Excel文件不同的sheet

xls = pd.ExcelFile(f)
name2df ={}
for name in xls.sheet_names:
    name2df[name] = pd.read_excel(f, sheet_name=name)

 

Pandas DataFrame tips

df = pd.DataFrame(series)
df = df[["username", "city", "online_time", "online_days"]]             # 重新组合各个列
df = df[df["online_days"] > 1]                                          # 按照指定列的值进行过滤
df = df.sort_values(['username', 'online_days'], ascending=True)        # 按照value排序
df.to_excel("special_add_dcache_list.xlsx", index=None)                 # 输出excel

  

posted @ 2018-01-13 16:34  lixin[at]hitwh  阅读(518)  评论(0编辑  收藏  举报