HDU_1733

    分层图网络流。为了保证每秒钟每个地方只站一个人,可以把每个点i拆成i和i'并连一条容量为一的边。分层图中每一层都表示一秒钟的站位情况,然后不断地增加图的层数,直到最大流等于人数为止就可以得到最小的时间了。

    至于-1的情况可以一开始用搜索预处理出来。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 20
#define MAXD 60010
#define MAXM 420010
#define INF 0x3f3f3f3f
int N, M, first[MAXD], e, next[MAXM], v[MAXM], flow[MAXM], cnt;
int S, T, d[MAXD], q[MAXD], work[MAXD], vis[MAXN][MAXN], NUM;
int dx[] = {-1, 1, 0, 0}, dy[] = {0, 0, -1, 1};
char b[MAXN][MAXN];
void add(int x, int y, int z)
{
    v[e] = y, flow[e] = z;
    next[e] = first[x], first[x] = e ++;
}
int inside(int x, int y)
{
    return x >= 1 && x <= N && y >= 1 && y <= M;
}
void init()
{
    int i, j, x;
    for(i = 1; i <= N; i ++) scanf("%s", b[i] + 1);
    S = 0, T = 1;
    memset(first, -1, sizeof(first)), e = 0;
    for(i = 1; i <= N; i ++)
        for(j = 1; j <= M; j ++)
            if(b[i][j] == 'X')
            {
                x = N * M + i * M + j;
                add(S, x, 1), add(x, S, 0);
            }
}
void DFS(int x, int y)
{
    int i, nx, ny;
    vis[x][y] = 1;
    for(i = 0; i < 4; i ++)
    {
        nx = x + dx[i], ny = y + dy[i];
        if(inside(nx, ny) && b[nx][ny] != '#' && !vis[nx][ny]) DFS(nx, ny);
    }
}
void build(int cur)
{
    int i, j, k, ni, nj, d = 2 * N * M * cur, x, y;
    for(i = 1; i <= N; i ++)
        for(j = 1; j <= M; j ++)
            if(b[i][j] != '#')
            {
                x = d + i * M + j, y = x + N * M;
                add(x, y, 1), add(y, x, 0);
                if(b[i][j] == '@') add(y, T, 1), add(T, y, 0);
                y = x - N * M;
                add(y, x, 1), add(x, y, 0);
                for(k = 0; k < 4; k ++)
                {
                    ni = i + dx[k], nj = j + dy[k];
                    if(inside(ni, nj) && b[ni][nj] != '#')
                    {
                        x = d - N * M + i * M + j, y = d + ni * M + nj;
                        add(x, y, 1), add(y, x, 0);
                    }
                }
            }
}
int bfs()
{
    int i, j, rear = 0;
    memset(d, -1, sizeof(d[0]) * cnt);
    d[S] = 0, q[rear ++] = S;
    for(i = 0; i < rear; i ++)
        for(j = first[q[i]]; j != -1; j = next[j])
            if(flow[j] && d[v[j]] == -1)
            {
                d[v[j]] = d[q[i]] + 1, q[rear ++] = v[j];
                if(v[j] == T) return 1;
            }
    return 0;
}
int dfs(int cur, int a)
{
    if(cur == T) return a;
    for(int &i = work[cur]; i != -1; i = next[i])
        if(flow[i] && d[v[i]] == d[cur] + 1)
            if(int t = dfs(v[i], std::min(a, flow[i])))
            {
                flow[i] -= t, flow[i ^ 1] += t;
                return t;
            }
    return 0;
}
int dinic()
{
    int ans = 0, t;
    while(bfs())
    {
        memcpy(work, first, sizeof(first[0]) * cnt);
        while(t = dfs(S, INF)) ans += t;
    }
    return ans;
}
void solve()
{
    int i, j, ans;
    memset(vis, 0, sizeof(vis));
    NUM = 0;
    for(i = 1; i <= N; i ++)
        for(j = 1; j <= M; j ++)
        {
            if(b[i][j] == '@' && !vis[i][j])
                DFS(i, j);
            if(b[i][j] == 'X') ++ NUM;
        }
    for(i = 1; i <= N; i ++)
        for(j = 1; j <= M; j ++)
            if(b[i][j] == 'X' && !vis[i][j])
            {
                printf("-1\n");
                return ;
            }
    if(NUM == 0)
    {
        printf("0\n");
        return ;
    }
    for(i = 1, ans = 0, cnt = N * M * 2 + M + 1;; i ++)
    {
        build(i);
        cnt += N * M * 2;
        ans += dinic();
        if(ans == NUM) break;
    }
    printf("%d\n", i);
}
int main()
{
    while(scanf("%d%d", &N, &M) == 2)
    {
        init();
        solve();
    }
    return 0;
}
posted on 2012-08-26 23:57  Staginner  阅读(298)  评论(0编辑  收藏  举报